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Abstract— The survey outlines and compares popular com-
putational techniques for quantitative description of shapes of
major structural parts of the human brain, including me-
dial axis and skeletal analysis, geodesic distances, Procrustes
analysis, deformable models, spherical harmonics, deformation
morphometry, as well as other less widely used techniques. Their
advantages, drawbacks, and emerging trends, as well as results of
application, in particular, for early computer-aided diagnostics,
are discussed.

Index Terms—Shape Analysis, Brain, Autism Diagnostics.

I. INTRODUCTION

The human brain belongs to the most complex anatomical
structures in the human body. Individual brains vary sub-
stantially, and therefore analyzing the brain presents a real
challenge. Figure 1 illustrates the complexity of the brain rep-
resented in a three-dimensional (3D) mesh format. Computer-
aided medical diagnostics calls for quantitative analysis of
many structural parts of the brain, such as e.g. its cortex,
ventricles, corpus callosum, hippocampus, brain stem, and
gyrifications.

Fig. 1. 3D mesh brain representation (the expanded section details its com-
plexity and variability due to multiple different structures and gyrifications.
Courtesy of Barras et al [1]

This survey focuses primarily on applications of various
shape analysis techniques to the human brain. Methods of
shape analysis for the human brain include techniques such
as medial axis and skeletal analysis, geodesic distances, Pro-
crustes analysis, deformable models, SPHARM, deformation-
based morphometry, symmetry-based analysis, Laplace-
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Beltrami operators, and homologous modeling, among other
techniques.

In 1979, Lande [2] proposed to analyze the shape by mea-
suring the brain volume. While the volumetric analysis of brain
scans does not arguably yield sound discriminatory features, it
was a key starting point for shape analysis related to the brain.
Later on, Desimone e.a. [3] and Martin e.a. [4] proposed two
more elaborate shape analysis frameworks. The first frame-
work examined color, shape and texture of the cortex, on 2D
scans of the brain. The second framework performed a more
advanced analysis by examining pre-generated mesh models
of the brain ventricles. To more accurately represent the brain,
the meshes were decomposed using eigen-vectors, having been
obtained in a way similar to conventional Principal Component
Analysis (PCA). These early frameworks for examining the
shapes of brain constructs did not produce reliable descriptors
of brain-related health or behavioral disorders, such as e.g.
autism. However, they inspired extensive subsequent research
that helped to push the current field of brain shape analysis
into the forefront of development for efficient techniques for
computer-assisted medical diagnostics.

Generally, shape analysis is applied to digital geometric
models of surfaces or/and volumes of objects-of-interest in or-
der to detect similarities or differences between the objects [5].
Typically, it is fully automated or combines automated and
manual processing, and is closely paired with some kind of
object segmentation. Segmented objects are represented in a
variety of digital formats, including volumes, point clouds, and
meshes. Most typically, the outer boundary (or surface) of an
object, or a manifold representing this object, is examined.1

Surface analysis, called surface interrogation in modern
computer graphics, and computer-aided design systems, ex-
plicitly examine intrinsic and extrinsic geometric properties
of surfaces of objects and manifolds, including visual pleas-
antness, technical smoothness, and geometric constraints [7].
It is often used to detect surface imperfections, analyze shapes,
or visualize different forms.

Shape analysis techniques can be primarily classified into
first- and second-order types, each containing large numbers
of congruency based, intrinsic, and graph based shape de-
scriptors [7]. The first-order methods typically rely on surface
normal vectors, inflections, and other intrinsic descriptors,
obtained e.g. by the Laplace-Beltrami analysis or the more
popular geodesic path analysis. Some congruency methods,
such as the shape distribution and symmetry analysis, also
fall into this category.

1By Henri Poincare [6], a manifold is the level set of a continuously differ-
entiable function between Euclidean spaces that satisfies the non-degeneracy
hypothesis of the implicit function theorem. In a simplified version, it can be
thought of as an object with no holes or discontinuities.
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Second-order analysis generally is based on the surface cur-
vature and second derivatives. Typical descriptors are produced
by moment analysis, spherical harmonics, and Procrustes anal-
ysis, being invariant with respect to congruency, and medial
axis, skeletal, and Reeb graph analysis, which also heavily
rely on the curvature. Importantly, many second-order analysis
methods additionally incorporate first-order techniques.

Both categories of shape analysis depend critically on shape
interrogation, or extraction of structural characteristics of a
shape from its geometric model [7], and re-meshing, i.e.
repartitioning of primitive components to fit best the original
shape. Most commonly, vertex-vertex or face-vertex methods
are used to construct the meshes. The vertex-vertex method
deals with a point cloud, where the points relate to critical
junctures in an object, while the face-vertex method exploits
faces that interconnect vertices in a specific and controlled
manner [8]. A widely known example of the latter is Delaunay
triangulation, in which every face is a triangle and the final
mesh consists of a large number of interconnected triangular
faces. While the re-meshing helps to preserve the original
shape of the object, it can also be used to enhance some
features of the shape. A primitive (such as e.g. a triangle that
minimally characterizes the shape) can locally fit any such
feature.

Some of the most popular, in application to the human
brain, shape analysis techniques are detailed and compared
below. These include (i) the medial axis and skeletal analysis,
which is commonly used for surface (2D) and volume (3D)
reconstruction in complex models; (ii) geodesic distances to
compare different brains in detail by using intrinsic and graph
based analysis; (iii) Procrustes analysis that can provide accu-
rate and quick statistical evaluation of shapes in rigid objects;
(iv) deformable models evolving to fit boundaries of complex
objects, and (v) more recent 3D surface approximation with
spherical harmonics in order to analyze the brain shape in
detail.

II. MEDIAL AXIS AND SKELETAL ANALYSIS

Medial axes of complex 2D/3D graphical models are widely
used for surface reconstruction and dimensionality reduction.
A medial axis, or a skeleton of an object is defined as the
set of internal points with more than one closest point on the
object’s surface (see Fig. 2). Generally, it is represented by
a polygon or a similar simple construction of concatenated
arcs and parabolas that follow the would-be centerline of the
object. The medial axis and skeletal graphs facilitate indexing,
matching, segmenting, or associating objects with one another.
Medial axis analysis has a wide arrange of uses, and can also
be used in many anatomical applications outside of the brain,
such as e.g. virtual colonoscopies.

The notion of a skeleton of a 2D or 3D shape was first
introduced by Blum et al [10], [11]. The underlying idea was to
place inside an object a primitive shape, such as a ball, inflate it
until reaching the object’s surface, and repeat this process until
filling the object with the maximum-size primitives. Connected
centers of the primitives form the skeleton that represents
geometric properties of the object’s interior, such as bends and

Fig. 2. Medial axis of a 2D object: the outer black line shows the boundary of
the object and the central dark line connecting the open circles is the medial
axis. Inner isolines indicate the same distances from the boundary [9].

elongations, and reveals the geometric structure, or constituent
parts of the object, and gives information about the object’s
position, orientation, and size.

TABLE I
AUTOMATED (A) OR SEMI-AUTOMATED (SA) MEDIAL AXIS ANALYSIS:

GROUND TRUTH (GT) FROM CLINICIAN (C) OR NON-CLINICIAN (N) EXPERTS;
DIMENSIONALITY (DIM) AND SIZES (#) OF EXPERIMENTAL IMAGE DATABASES.

Publication Year Mode Dim # GT
Naf et al [12] 1996 A 3D n/a N
Golland et al [13] 1999 A 2D 66 C
Pizer et al [14] 1999 SA 2D 20 C
Golland et al [15] 2001 A 3D 30 C
Styner et al [16] 2001 A 3D 20 C
Gorczowski et al [17] 2007 A 3D 70 C
Elnakib et al [18] 2011 A 3D 34 C
Paniagua et al [19] 2013 A 3D 90 C

Table I exemplifies applications of skeletons for human
brain analysis, starting from the early and novel at that time
proposal by Naf et al [12]. Naf classified various organs,
including the brain, after characterizing their structure in 3D
images with Voronoi diagrams and skeletons. Excepting [14],
all the methods in Table I were used for medical diagnostics
or classification.

Golland et al [13] analyzed skeletons of the corpus callosum
in 2D images in order to classify cases of schizophrenia. The
initial skeletons were refined using snakes, or active contours,
which evolved from different randomly chosen starting points.
Then the curvature angles and the width of the skeleton shown
in Fig. 3 were used as discriminatory features. The angles
were calculated between each set of adjacent points along
the sampled medial axis, and the width was defined as the
radial distance from the medial axis point to the surface
boundary. Sampling more points of the skeleton provides finer
details, but also increases the analysis time. The approach
was tested on clinical datasets for normal and schizophrenic
patients. A relatively high accuracy (more than 70% in the
best case) was obtained for identifying schizophrenia in pa-
tients by statistical shape analysis of the corpus callossum
and hippocampus [15] (the accuracy of a linear classifier in
determining schizophrenic patients on the training data proved
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to be consistently higher than the cross validation one).

Fig. 3. Golland’s [13] skeleton extraction: gray-coded maps (a,b) of
distances from the medial axis to the outer boundary and two features (c)
derived from the medial axis for classification, namely, the curvature angle
and the shape width.

As noted in [13], [15], the main advantages and drawbacks
of skeletons relates to their compact and intuitive shape
representation that can be used for segmentation, tracking,
and object recognition, as well as their high sensitivity to
noise in the object’s boundary, respectively. The complex and
spatially variant structure of the brain leads to a large amount
of noise along the typical shape boundary. To overcome this
challenge, frequently the typical general shapes of the objects
are known in advance from segmented training samples, and
methods using fixed topology skeletons have been proposed
in [13], [15]. The significant benefit of such skeletons is that
they can be adjusted to each current object of similar shape
and optimized for accuracy.

Pizer et al [14] proposed another method of quantifying
object shapes in 2D images that can be used in a variety of
applications, including different brain structures. In this case
the skeletons were used to register brain shapes and compare
the brain ventricles and brain stem. These structures could then
be quantitatively described using a combination of the medial
axes and distance analysis.

Golland’s works [13], [15] dealt primarily with the corpus
callosum of the shape that typically features no extending
appendages. Contrastingly, Pizer’s medial axis analysis was
focused on the brain ventricles, shapes of which (and thus their
skeletons) often have one or more appendages. The skeletal
appendages extend outward to include additional information
about the more complex shapes. In Pizer’s case, the medial
axis analysis was modified to incorporate intersection points
where multiple skeletons can be fused together, as e.g. in
Fig. 4. The resulting more complex skeletons proved to be
useful for solving various problems, including segmentation
and image registration [14]. Both Pizer’s and Goland’s ap-
proaches can be easily extended from 2D to 3D objects, at
the expense of growing their computational time due to the
calculation of 3D distances.

Styner and Gerig [16] expanded Pizer’s concepts and ana-
lyzed the brain ventricles in 3D (256×256×128) images using
Voronoi skeletons and principal component analysis (PCA) to
obtain discriminatory features of shape changes and locality.
Spherical harmonics were used to analyze similarities between
the skeletons and compare twin ventricles. Similar to Pizer’s
implementation, Styner and Gerig’s skeletons contain many
detailed branches and intersections that represent the shape of
the object. To reduce the effect of the noise in the outer object’s
boundary of the shape, the shape was smoothed by using

Fig. 4. Shown is a visual representation of Pizer’s [14] medial axis approach.
Due to the complexity of the shape, it is initialized with three skeletons (a).
These are then individually examined (b) to create a composite skeleton of
the parent figure (c).

PCA to include only dominant characteristics of shapes. After
this initial simplification, the Voronoi skeleton was constructed
using standard medial axis computation. Then PCA was used
once again to “prune” smaller and less important branches
of the skeleton.The resulting model reflected the common
branching topology of the initial object. Just as with the
previous two models, Styner and Gerig’s skeleton accurately
represented the coarse features of the shape of the brain.

Gorczowski et al [17] used skeletons to analyze shapes and
poses of five brain structures in order to classify autism. The
mean classification accuracy on the basis of only poses, only
shapes, or combined poses and shapes was 56%, 60%, and
64%, respectively, for an image database of 46 autistic and 24
control subjects. Although the combined features gave better
results, the overall classification rate was rather low.

Elnakib et al [18] obtained notably better classification
accuracy for autistic and control subjects by analyzing the
corpus callosum centerline: the study correctly classified 94%
autistic and 88% control subjects at the 85% confidence level,
94% autistic and 82% control subjects at the 90% confidence
level, and 82% autistic and 76.5% control subjects at the 95%
confidence level for the database of 17 autistic and 17 normal
subjects.

Paniagua et al [19] used Spherical Harmonics (SPHARM)
to calculate the mean latitude axis of ventricles in neonates.
While this is not a full medial axis computation, it can be
computed in a straightforward manner when using SPHARM.
Importantly, Paniagua provides an important fusion of medial
axis and SPHARM analysis to achieve a diagnostic classifica-
tion in neonatal subjects. This is consistent with the modern
trend of combining techniques to more accurately achieve
results.

In total, the medial axis and skeletal analysis is important
for examining basic locations and shapes of structural parts of
the brain. Simple representations of and similarity measures
for very complex shapes and accurate descriptions of the
objects are its main advantages, which are very useful in
applications such as object classification and matching of
for medical diagnostics or understanding of object structure
and construction. The limited use of the object’s surface is
the major drawback of the skeletal analysis that significantly
decreases the usefulness of the medial axes and skeletons
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in applications dealing with the surface characteristics and/or
small variations in shapes.

III. GEODESIC DISTANCES

Of primary interest in the analysis of the brain is the
ability to make detailed comparisons of different brains. This
often requires some form of non-rigid registration of the two
surfaces of interest, or surface matching. A popular approach
to this shape analysis problem is the use of geodesic distances.
Geodesic distance can serve as an important geometric mea-
surement of the brain and can help to provide a means of
understanding complex shapes. Geodesic distances can serve
to deliver a wealth of information about the surface geometry
of a shape [7]. One of the first uses of geodesic distance,
as applied to the brain, was by Lewis Griffin [20] in 1994.
Griffin proposed the use of geodesic distance to characterize
the cortical shape of the brain. This was later expanded on
by Khaneja [21] who used geodesic distance to examine the
curvature of sulci in the brain.

Geodesic distance is a combination of intrinsic and graph-
based analysis. Geodesic distance is defined as the length
of the graph of a geodesic between two vertices within an
object [22]. It is the shortest path between two points that
can be found in a curved space (such as the surface of a
sphere) and has a wide array of practical uses. If you have ever
boarded a plane to travel between continents, then there is a
very high likelihood that you have traveled on a geodesic path,
as these are the shortest distances between two points. In the
sulci of the brain geodesic paths that connect two points in a
single sulcus will often follow the curvature of the sulcus [23].
The detection of geodesic paths is also heavily utilized on the
surfaces of meshes for common graphics operations such as
mesh segmentation, watermarking, editing, and smoothing [7].

TABLE II
AUTOMATED (A) OR SEMI-AUTOMATED (SA) GEODESIC DISTANCE

ANALYSIS: GROUND TRUTH (GT) FROM CLINICIAN (C) OR NON-CLINICIAN (N)
EXPERTS; DIMENSIONALITY (DIM) AND SIZES (#) OF EXPERIMENTAL IMAGE

DATABASES.

Publication Year Mode Dim # GT
Wang et al [23] 2003 A 3D n/a N
Pastore et al [24] 2005 SA 2D 200 N
Huang et al [25] 2006 A 3D 36 C
Mio et al [26] 2007 A 3D 14 C
Butman et al [27] 2008 SA 3D 12 C
Hua et al [28] 2008 A 3D 20 N
Liang et al [29] 2008 A 3D 34 C
Joshi et al [30] 2012 A 3D 12 N

Table II exemplifies applications of geodesic distance to the
human brain analysis. It includes methods starting with the
early application by Wang et al [23] which analyzes individual
sulci of the brain. No methods that are primarily based on
geodesic distance analysis have been used solely for medical
diagnostics or classification.

Geodesic distance can be defined in a number of ways,
although the most common calculations are for the Gaussian
curvature and the mean surface curvature of an object. These

Fig. 5. A visual representation of a simple geodesic distance. The two points
on the curve (shown as red circles) are connected by Euclidean (red straight
line) and geodesic (green curved line) distance lines. Note how the geodesic
distance follows the arc of the curve.

metrics allow features of the brain, such as the gyrus and
sulcus, to be easily calculated by examining each point.
Information about the convex and concave areas of the sulci
can be determined by examining the sign of the Gaussian
curvature, and if it is greater than or less than the mean surface
curvature.

Once points of interest are determined, the geodesic distance
can be computed using a number of different proposed meth-
ods [31], [32], [33]. One of the most popular methods is the
Fast Marching Method proposed by Kimmel and Sethian [33].
This method has gained wide acceptance due to the speed
of the calculations, and its easy applicability to a vast array
of applications, which include two- and three-dimensional
structures. An example of the result of the Fast Marching
Method is illustrated on a synthetic surface in Fig. 6.

Fig. 6. Illustration showing the calculated geodesic distance between two
points on a synthetic surface. (a) The original synthetic surface. (b) The
synthetic surface overlayed with geodesic distances between four example
points, calculated using the Fast Marching Method [33], [23]

Wang et al [23] proposed the use of geodesic distance
analysis to analyze the sulci and gyral fissures of the brain
for matching brains. Locations were classified and compared
between subjects. Areas where the sulci and gyri were similar
could then be detected in the brain. Their results showed
that surface correspondences could be found between brains,
and that the fissures could be consistently identified across
brains. Pastore et al [24] used geodesic distances to improve
the segmentation accuracy (Fig. 7) of the sulci and gyri in
the brain. He found that geodesic distances proved to be
a precise, efficient and versatile method for segmenting the
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external boundary of the brain because the gyrifications of the
brain have large curvatures, and this feature is carried over
into the MRI images.

Fig. 7. Example of a geodesic distance calculation between two points (p
and q) on the boundary of a 2D MRI scan [24]. The area has been zoomed
and binarized so that the curvature can be clearly seen.

Huang et al [25] proposed a method for extraction of
brain for comparison of contours using geodesic distances.
Results they obtained showed that geodesic distances can aid
in making extractions consistent across data sets, and the
proposed method achieved a tight brain mask around the brain
cortex. Mio et al [26] used geodesic distances to compare
brains by comparing the decomposed geodesic curvature of
each brain. Their work illustrated how geodesic distance can
be successfully used to quantify morphological similarity and
differences, and to identify particular regions where shape
similarity and divergence are the most pronounced.

Butman et al [27] identified the brain ventricles and com-
puted the volume of hydrocephalus in subjects using geodesic
distance. Similar to the results of Huang, Butman showed that
segmentation results are robust throughout data sets and able
to classify hydrocephalus.

Hua et al [28] combined geodesic distances with vector
image diffusion, a method of examining intrinsic geometric
characteristics (e.g. mean curvatures) using a multi-scale dif-
fusion and scale space, to match brains of different subjects.
This method was shown to be superior to anisotropic diffusion
and SIFT curvature matching algorithms in finding stable
keypoints. Liang et al [29] approximated the curved cingulum
bundle using Diffusion Tensor Imaging (DTI) tractography
and geodesic distances. Although there were many limitations
found, a significant reduction in fractional anisotropy values,
within specific anatomical regions, were detected when using
geodesic distances.

Joshi et al [30] analyzed the sulcal curvature in the cortex of
the human brain using geodesic curvature. They concluded that
geodesic curvature showed promising prospects for analyzing
the sulcal curvature in case of small temporal lobe lesions. In
literature and application, geodesic distances are most often
used to examine the curvatures of locations of the brain and
to locate key points that can be identified due to their curved
nature. Geodesic distances have proven a useful shape analysis
tool in segmentation, registration, and analysis and are also
unique in that they incorporate aspects of first- and second-
order analysis.

Geodesic distances have a large number of applications, but

primary advantages are their applications in segmentation and
the identification of locations in the shapes of brains. They are
also an excellent metric for examining curvature and localized
areas of objects, and can provide many discriminatory metrics
for classification. Their major drawbacks are their generally
localized nature, and the fact that it is difficult to examine
large and complex objects that have numerous inflections in
their curvature. Three-dimensional analysis of shapes such as
the cortex and white matter of the brain would prove more
challenging for a solely geodesic analysis.

IV. PROCRUSTES ANALYSIS

Procrustes analysis is a statistical form of congruent shape
analysis that primarily focuses on the distributions of sets
of shapes. As an interesting aside, Procrustes was a rogue
and bandit who was the son of Poseidon in ancient Greek
mythology [34]. He was known for either stretching people
or cutting off their limbs to force them to fit within a
statically sized iron bed. The process of Procrustes analysis
thereby refers to shape analysis in which properties such as
translation, rotation and scaling are removed so that the shape
can be fit into a common reference frame. The process is
inherently congruent. Procrustes analysis is most commonly
performed by superimposing shapes on top of one another
and then applying uniform properties such that geometric
transformation of the objects are removed and the shapes can
be compared. Procrustes analysis has also served an important
role in shape warping, especially as applied to the brain [35].

TABLE III
AUTOMATED (A) OR SEMI-AUTOMATED (SA) PROCRUSTES ANALYSIS:

GROUND TRUTH (GT) FROM CLINICIAN (C) OR NON-CLINICIAN (N) EXPERTS;
DIMENSIONALITY (DIM) AND SIZES (#) OF EXPERIMENTAL IMAGE DATABASES.

Publication Year Mode Dim # GT
Duta et al [36] 1999 A 2D 28 C
Penin et al [37] 2002 SA 3D N/A N
Bienvenu et al [38] 2011 A 3D 144 N

Table III exemplifies applications of procrustes analysis to
brain analysis. It includes methods starting with the early
application by Duta et al [36] which analyzes the properties
of skull structure. Bienvenu et al [38] used Procrustes analysis
primarily for medical diagnostics or classification.

Nicolae Duta et al [36] proposed a method for the basis of
Procrustes analysis in 2D shape models in medical image anal-
ysis. Duta defines the main reasons for the use of Procrustes
analysis as a convenient way to compute a prototype (average
shape) from a set of simultaneously aligned shapes. Once the
point correspondences are found, there exists an analytical or
exact solution to the alignment problem.

Mathematically, Procrustes analysis seeks a solution to the
following problem: Assume we are given a set of m shape
instances where Sk = (xk

i , y
k
i )

k=1...m
i=1...nk

that is represented by
a set of landmarks or boundary points. This set is partitioned
into a set of clusters and for each shape cluster a mean shape,
or prototype, must be computed. The set of prototypes can then
be used for segmentation or the calculation of other metrics.
One such metric is a Procrustes residual, which is defined
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as a deviation in landmarks on a specific object from the
consensus of a group, or the prototypes. Duta illustrated the
usage of Procrustes analysis for the segmentation of objects
and registration of different objects following segmentation.
He also introduced algorithms for global and local similarity
measures using Procrustes analysis.

Penin et al [37] proposed a method for the study of the skull
of humans and brains as compared to other primates through
the use of tri-dimensional Procrustes analysis. In this study,
twenty-nine key features were identified as common landmarks
between the different skulls and the shapes were defined as
Procrustes residuals. A Procrustes residual is a deviation in a
landmark from the consensus of a group. One downside that
Penin notes is that in Procrustes analysis the size and shape are
calculated as independent vectors when using using traditional
shape theory, meaning that normalization of objects is often
required during pre-processing.

Bienvenu et al [38] proposed a similar method for exam-
ining endocranial variations. Bienvenu found that Procrustes
analysis was more favorable in examining the skull, as it
has less variability than the cortical surface itself, and is
therefore less subjective to the noise introduced by the large
differences in the cortex. Similar to Penin, Bienvenu selected
specific landmarks commonly found on the enocranial surface
and generated a prototype. This prototype was then used
to examine the differences between males and females of
different species. It was found that Procrustes analysis was
capable of determining not only the gender, but the species
as well due to the large variation in the landmarks of the
prototypes.

In a follow up to his previous work, Duta examined the
automated construction of shape models using Procrustes
analysis [39]. This study determined that the major advantage
of Procrustes analysis, as applied to the brain, is that Procrustes
analysis is a reliable method of classifying and segmenting
anatomical structures in relatively rigid objects including the
ventricles and corpus callosum of the brain (Fig. 8). It strug-
gles with more complex structures of the brain, specifically the
gray and white matter. Procrustes analysis therefore provides
an accurate and fast method of analysis in objects that do not
have significant variation. This limits its applicability to only
specific cases, however it is a useful measure for examining
the shape of the brain and its more rigid structures.

One of the more direct problems related to Procrustes
analysis is the method of selecting landmarks on the brain.
Because of the variability in sulci and notable landmarks on
the brain, this may have an impact on the resulting analysis.
Furthermore, the selection of landmarks could introduce a bias
into the analysis. If landmarks are not appropriately located,
areas may either be over or under-compensated for, adding
an additional degree of complication to this form of analysis,
and it is likely that this is one of the driving reasons this
methodology has only seen moderate modern adoption.

Procrustes analysis, while useful, does not provide as in-
depth an analysis of complex objects as some other methods.
Discussion of deformable models and spherical harmonics
will illustrate examples of some of the more popular tech-
niques for identifying mathematical differences between three-

Fig. 8. Magnetic resonance image (a) of the human brain. Neuroanatomic
structures of the brain are highlights by a neuroanatomist (b). Structures
shown in yellow are able to be accurately classified by Procrustes analysis.
Image courtesy of Duta et al [39].

dimensional shapes that the human eye is unlikely to be able
to classify.

V. DEFORMABLE MODELS

Deformable models, also known as active surfaces, are
a model-based technique that combines geometry, physics
and approximation theory in order to offer a unique and
powerful approach to image analysis [40]. Deformable models
have proven useful in a variety of applications for the brain
including segmentation, shape representation, matching, and
motion tracking. Unlike more rigid methods of analysis, de-
formable models are capable of accommodating for significant
variability in shapes (Fig. 9), like the brain, over time and
across different individuals. While deformable models were
originally used in the field of computer vision, their application
to the analysis of complex medical objects, such as the brain,
was quickly realized by the scientific community. In their two-
dimensional (2D) forms deformable models are often referred
to as active contours or snakes [41], [42].

Fig. 9. Illustration of a 3D deformable model as it contracts on a star-like
object [42]. Three frames of progression are shown starting at the left with
the original spherical model. The model gradually deforms around the object
until it has converged on the star in the center.

Deformable models have mathematical foundations in ge-
ometry, physics and shape approximation theory [40], [41],
[42]. Geometry is used to represent an object’s shape, and
deformable models commonly make use of complex geometric
representations, such as splines, that offer flexibility and many
degrees of freedom. Physics is applied to impose constraints
controlling how that shape can vary, with respect to properties
such as space and time. The name ”deformable models” is
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most closely associated with the incorporation of this elasticity
theory at a physical level. Therefore, deformable models are
most commonly constructed inside a Lagrangian dynamics
setting that is able to respond naturally to constraints and
applied forces. As a model deforms in the Lagrangian setting,
the deformation energy will give rise to internal elastic forces.
Potential energy functions for the external model are defined
so that the model deforms to fit the data. Through the
combination of these two energies, deformable models can
be used for many situations. Some of the most common shape
analysis applications of deformable models are in the areas of
segmentation and volume analysis, along with shape matching
and registration.

TABLE IV
AUTOMATED (A) OR SEMI-AUTOMATED (SA) DEFORMABLE MODEL

ANALYSIS: GROUND TRUTH (GT) FROM CLINICIAN (C) OR NON-CLINICIAN (N)
EXPERTS; DIMENSIONALITY (DIM) AND SIZES (#) OF EXPERIMENTAL IMAGE

DATABASES.

Publication Year Mode Dim # GT
Davatzikos et al [43] 1996 SA 3D 6 N
Dale et al [44] 1999 A 3D 100 C
Smith [45] 2002 A 3D 45 C
Zhuang et al [46] 2006 A 3D 49 C
Joshi et al [47] 2007 A 3D 6 N
Tu et al [48] 2007 A 3D 28 C
Huang et al [49] 2009 A 3D 36 C
Liu et al [50] 2009 A 3D 38 N
Li et al [51] 2011 A 3D 5 N
Hashioka et al [52] 2012 SA 3D 14 C

Table IV exemplifies applications of deformable model to
human brain analysis. It includes methods starting with the
early application by Davatzikos et al [43] which was used
to identify the central sulci and interhemispheric fissures in
the brain. No methods that are primarily based on deformable
model analysis have been used primarily for medical diagnos-
tics or classification.

Davatzikos et al [43] proposed one of the earliest methods
for analyzing the cortical surface of the brain using deformable
models. He used deformable models to identify similar land-
marks on different brains for alignment. His results showed
that deformable models could be used to to register two
different brains with one another, and that they could pick
out cortical and subcortical landmarks on the brain cortex.

Fig. 10. Here the results of a deformable model are shown. The goal of the
work in this figure is to analyze the volume, and the deformable model proves
useful in isolating the voxels that belong to the brain. After identifying the
desired portion of the brain with a deformable model, calculating the volume
becomes a trivial task [44].

Dale et al [44] used a simplified deformable model to

segment the cortex of the brain (Fig. 10). The algorithm proved
to be a robust method of identifying the cortex of the brain
with an average accuracy of 96% across a wide variety of
subjects. In 2002, Stephen Smith [45] introduced the Brain
Extraction Tool (BET). An intensity model is used to initialize
the surface model, which is then refined to extract the brain.
It was shown to be a fast and accurate method of extraction,
having a mean percentage error of about 7% over 45 data sets.
Zhuang et al [46] used a model-based level set to perform skull
stripping on pediatric and youth brains. The approach showed
good accuracy using the DICE metrics, and noteably showed
an improvement over the BET proposed several years before
by Smith [45].

Joshi et al [47] used deformable models to register sulci
in along with a coregistration of brain volume data. Results
showed a statistical improvement over the AIR [53], [54]
and HAMMER [55], [56] methods. Tu et al [48] use de-
formable models to aid in segmenting specific locations found
in the brain. The discriminative model he developed played
a major role in obtaining good segmentations. Additionally,
the segmentation could be further improved by adjusting the
smoothness of the model, and constraining the shape with a
global shape model.

Huang et al [49] proposed the use of deformable models
to segment the cortex, gray matter and CSF of the human
brain. He showed good results when the data was analyzed
using the Dice metric. He concluded that deformable models
led to improved segmentation accuracy and robustness when
applied using a hybrid approach against, as opposed to using
only geometric or statistical features. On real clinical MRI data
sets, the hybrid approach demonstrated an improved accuracy
over other state-of-the-art approaches.

Liu et al [50] suggested a deformable model driven by radial
basis functions to extract the brain. This model proved to be
an accurate and fast technique, having a similar accuracy to
the BET proposed by Smith [45]. Li et al [51] proposed an
alternative method for the automated extraction of the brain
using a deformable model. His method was an extension
of the human brain extraction tool and was found to more
reliably extract brains through the inclusion of a deformable
model. Hashioka et al [52] proposed a method that utilized
Active Contour Modeling (ACM), also commonly referred to
as snakes, for the extraction of the cortex in neonatal children.
His results showed a Sensitivity of 98.5% with a false positive
ratio of 13.8%. While his results were largely successful when
an optimal head contour was present, he noted that a non-
optimal contour performed less robustly.

While deformable models may not be in the forefront of
diagnosis classifications, they have become an integral element
of shape analysis. Their major advantage is in the area of
shape segmentation, in which they excel at beyond all other
techniques. Deformable models are also very adaptable at
isolating complex regions of shapes for further analysis. De-
formable models provide useful and accurate ways to identify
and segment locations in the brain which is a critical step in
analyzing the shape of the brain. The major drawback of using
deformable model analysis is that it does not often provide
many metrics for directly examining the brain for the purpose
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of classification or matching.

VI. SPHERICAL HARMONICS

Dealing with the orientation of the brain and aligning two
brain objects with one another to compare differences in
shape can prove challenging and time consuming. Spherical
Harmonics, a popular method of shape analysis, can be used
to remove these factors. Spherical harmonic analysis [57], [58]
considers 3D surface data as a linear combination of specific
basis functions. Additionally, spherical harmonics provide a
rotation invariant common coordinate system in which shapes
can be analyzed. The main goal of spherical harmonics is
to decompose a 3D object into concentric, or unit, spheres.
This process is what discards the orientation information that
primarily accompanies a 3D shape representation of an object.
The result is a shape descriptor that is both descriptive and
invariant to orientation.

Consideration of the analysis of the entire brain for purposes
of identifying differences in shape between different structures
is one of the major advantages of spherical harmonics. The
volume changes in the brain are intuitive features that can be
used to describe illness, disorders and atrophy. One main area
volume change fails to address is the structural changes of the
surface of the brain. This is an area that spherical harmonics
analysis seeks to address. The use of spherical harmonics
(SPHARM) applied to brain analysis was first proposed by
Gerig et al [57] for the analysis of the lateral ventricles of
the brain. SPHARM was originally developed as a technique
for model-based segmentation and data storage, however its
applications have grown in recent years. One important factor
of SPHARM analysis is that it relies on the surface of a shape
and manifold properties. Due to this, only shapes without holes
or disconnects in their surfaces can be accurately analyzed.

SPHARM is a global based shape analysis technique that is
hierarchical in nature. Any shape can be parameterized by a set
of basis functions, and these basis functions are the referred
to as spherical harmonics. SPHARM is based on Laplace’s
equation and involves a mathematical solution to the angular
components of the equation. They were first discovered by
Simon de Laplace in 1782, although it would take several
centuries before they were applied to the shape analysis of
the brain.

Spherical harmonic basis functions Y m
l , −l ≤ m ≤ l of

degree l and m are defined on θ ∈ [0;π]× φ ∈ [0; 2π] by the
following definitions [57]:

Y m
l (θ,φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimθ

Y −m
l (θ,φ) = (−1)mY m∗

l (θ,φ)

(1)

where Y m∗
l denotes the complex conjugate of Y m

l . Pm
l

describes the associated Legendre polynomials given as

Pm
l (ω) =

(−1)m

2ll!
(1− ω2)

m
2

dm+l

dωm+l
(ω2 − l)l (2)

The surface is then decomposed from the cartesian co-
ordinate functions and is represented as v(θ,φ) =

(x(θ,φ), y(θ,φ), z(θ,φ))T . To express a surface using spher-
ical harmonics the following equation is used:

v(θ,φ) =
∞∑

l=0

l∑

m=−l

cml Y m
l (θ,φ) (3)

where the coefficients cml are three-dimensional vectors that
are typically obtained through solving a least-squares problem
for the points. As previously mentioned, these basis functions
allow for a hierarchical description of the surface of a shape.
The more coefficients are used in the reconstruction, the more
detail is present in the final constructed shape.

TABLE V
AUTOMATED (A) OR SEMI-AUTOMATED (SA) SPHERICAL HARMONIC

ANALYSIS: GROUND TRUTH (GT) FROM CLINICIAN (C) OR NON-CLINICIAN (N)
EXPERTS; DIMENSIONALITY (DIM) AND SIZES (#) OF EXPERIMENTAL IMAGE

DATABASES.

Publication Year Mode Dim # GT
Keleman et al [59] 1999 A 3D 21 N
Gerig et al [57] 2001 A 3D 20 C
Chung et al [58] 2007 A 3D 28 C
Uthama et al [60] 2007 A 3D 40 C
Abdallah et al [61] 2008 A 3D 18 C
Chung et al [62] 2008 A 3D 28 C
Uthama et al [63] 2008 A 3D 20 C
Esmaeil-Zadeh et al [64] 2010 A 3D 95 N
Nitzken et al [65] 2011 A 3D 45 C
Nitzken et al [66] 2011 A 3D 30 C
Geng et al [67] 2011 A 3D 5 N
Kim et al [68] 2011 A 3D n/a C
Paniagua et al [19] 2013 A 3D 90 C
Hosseinbor et al [69] 2013 A 3D 69 C

Table IV exemplifies applications of Spherical Harmonics
(SPHARM) to human brain analysis. It includes methods
starting with the early application by Keleman [59], along with
notable applications, e.g. Gerig et al [57], which have shown
SPHARM as a potential method for classifying neurological
disorders. SPHARM has been widely applied as a method for
potential diagnosis.

Brechbhler et al [70] demonstrated the usage of SPHARM
as a method for parameterizing closed surfaces of 3-
dimensional objets. In 1999 Keleman [59] demonstrated the
ability of SPHARM to analyze shape deformations in neuro-
radiological data. Keleman used training data to compute
SPHARM representations of the brain which were than sim-
plified using PCA and applied to segment a cortex. His
results showed that SPHARM was a promising technique
for improving standard brain segmentations because of the
included 3D forces SPHARM offered.

Gerig et al [57] proposed the one of the most significant
applications of SPHARM. He used SPHARM to analyze the
volume similarity between twin brains and demonstrated that
SPHARM shape measures reveal new information in addition
to size measurements. He proposed that this information might
become relevant for an improved understanding of the struc-
tural differences not only in normal populations, but also in
comparisons between healthy controls and patients. A sample
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Fig. 11. Decomposition of an object, as described by Gerig et al [57]. In
the foreground the spherical harmonics are plotted overlayed on top of a unit
sphere (the traditional method of display). In the rear of the image, the polar
plot of the unit spheres are shown to give a more detailed understanding of
the actual information contained within each sphere in the foreground.

example of the deformation of an object is shown in Fig. 11.
Styner and Gerig [71] later proposed a framework package
based on SPHARM analysis entitled SPHARM-PDM that
could be used for analysis of a multitude of brain structures.
This SPHARM-PDM package has been used for examining
various brain structures, including work by Kim et al [68]
on the hippocampus, and by Paniagua et al [19] (previously
mentioned) on the lateral ventricles in neonates.

Chung et al [58] proposed a method to analyze the computed
SPHARM coefficients to identify autism in subjects. While
the SPHARM coefficients did not generate reliable results,
his work showed the ability accurately and efficiently encode
neurological information using a weighted-SPHARM. Chung
et al [62] continued his application and applied his weighted-
SPHARM to find statistically significant differences between
autistic and control subjects using the coefficients. While
his work showed some areas of statistical difference, the
locations were largely random. His work did however show
that weighted-SPHARM provides better smoothing in cortical
applications than other methods.

Uthama et al [60] proposed the analysis of the ventricle
geometry using SPHARM between Parkinson’s Disease (PD)
and control patients. He showed that a statistically significant
comparison (p < 0.05) of controls and PD subjects could be
made using SPHARM and that it was able to detect subtle
changes in synthetic and clinical brain ventricle data. Uthama
et al [63] also proposed the use of SPHARM to perform
fMRI spatial analysis. He was able to demonstrate differences
in the way PD patients and healthy controls respond to an
increased task demand. The SPHARM analysis illustrated that
the inability to respond to task demand was reflected in the
failure of PD subjects to increase basal ganglia output, and a
reliance on cerebellar and cortical activity to enable successful
performance.

Abdallah et al [61] applied a parameterization to meshes
before SPHARM application to improve shape detection in
ventricles. Results showed that a parameterization of a shape
followed by SPHARM analysis can lead to improve compar-

isons and better shape descriptors.
Esmaeil-Zadeh et al [64] use SPHARM to analyze the

hippocampus to classify subjects as either normal or epileptic.
His results showed that in an optimum case, a 90.32% rate of
classification of left and right anterior temporal lobes could be
achieved when validated using the leave-one-out method.

Fig. 12. Method proposed by Nitzken [65] for the approximation of the 3D
brain cortex shape for autistic (A) and normal subjects (C).

Nitzken et al [65] proposed an alternative use SPHARM
by using the SPHARM reconstruction error to classify autism
(Fig. 12). Classification accuracies on a test population of
100% could be achieved and illustrates a potentially effective
way of classifying autism in subjects. Nitzken et al [66] later
expanded this theory to the classification of dyslexia where
similar results were achieved.

Geng et al [67] demonstrated the use of SPHARM coeffi-
cients to perform nonrigid registration of brain white matter
and fiber tracts. This method performed better than standard
second order registration methods, although this could also be
attributed to the use of higher orders when applying SPHARM.
Overall, it was believe that SPHARM provided a notable im-
provement. In 2013, Hosseinbor et al [69] proposed a further
expansion of SPHARM to a 4-dimensional representation of
subcortical structures. This new 4D SPHARM is entitled Hy-
perSPHARM and is intended to serve as a method of tracking
changes over time using SPHARM. This allows SPHARM
to directly compete with applications typically reserved to
methods such as Voxel- and Deformation-Based Morphometry.

SPHARM is one of the most beneficial methods of shape
analysis for providing meaningful global analyses of objects.
SPHARM excels in brain analysis areas that involve large
surfaces, such as the cortex and white matter. The major
drawbacks to SPHARM analysis are that it can be difficult
to localize the analysis to understand select locations. It
also struggles with applications such as segmentation and
automated identification of objects in two-dimensional images.
It’s greatest strength comes in it’s ability to distinguish be-
tween shapes and it’s applications such as clinical diagnosis
classification.

VII. VOXEL- AND DEFORMATION-BASED MORPHOMETRY

Voxel based morphometry (VBM) is another technique for
examining the entire brain [80]. VBM is a technique wherein
brains between subjects are generally warped, aligned, and
normalized to remove large differences between the brains,
and a volume is then compared across each brain on a voxel by
voxel basis. In VBM smoothed values of the voxels, typically
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TABLE VI
AUTOMATED (A) OR SEMI-AUTOMATED (SA) VOXEL- AND

DEFORMATION-BASED MORPHOMETRY ANALYSIS: GROUND TRUTH (GT)
FROM CLINICIAN (C) OR NON-CLINICIAN (N) EXPERTS; DIMENSIONALITY (DIM)

AND SIZES (#) OF EXPERIMENTAL IMAGE DATABASES.

Publication Year Mode Dim # GT
Chung et al [72] 2002 A 3D 28 C
Leow et al [73] 2006 A 3D 17 C
Lepore et al [74] 2007 A 3D 30 C
Afzali et al [75] 2010 A 3D 31 C
Wang et al [76] 2012 A 3D 2 C
Yang et al [77] 2012 A 3D 60 C
Fletcher et al [78] 2013 A 3D 285 C
Shi et al [79] 2013 A 3D 35 C

an averaging of a voxel and its neighbors, are used. The
major usage for VBM is the detection of differences and
similarities for images between two populations or shapes [75].
Deformation-based morphometry (DBM) is a similar form of
statistical analysis to VBM, however, instead of measuring
the changes between voxels, the changes on the deformation
fields are used. The most common variant of DBM in brain
shape analysis is Tensor-based morphometry (TBM), which is
based on the Jacobian determinants. While DBM, and more
specifically TBM, are able to detect more subtle changes
between brains, they introduce a significantly higher degree
of computational complexity when compared to VBM, as
the warping often involves highly non-linear algorithms. Both
VBM and TBM are commonly used in measuring cortical
thickness measurements as well.

In 2001, Ashburner et al [81] made a case for VBM in
response to criticism posed in Dr. Bookstein’s article “Voxel-
Based Morphometry Should Not Be Used with Imperfectly
Registered Images” [80]. He explains that VBM was a method
originally intended to explore cortical thickness and bene-
fits from not being affected by volume changes, the major
weakness of volumetric analysis. While acknowledging the
partial volume effect as a potential issue, Ashburner also
details how modern normalization techniques allow for high-
resolution image alignments and warping. He also discusses a
major benefit in that VBM is not subject to landmark selection
that many other methods, such as Procrustes analysis, suffer
from. In summary, VBM is a useful and reliable method for
examining the volume of the brain and its sub-components,
while avoiding the traditional pitfalls associated with volu-
metric measurements.

Afzali et al [75] explored the differences between using
VBM and the tractography of diffusion tensor MRIs for
patients with epilepsy. Compared to the tractography methods,
VBM showed a consistently accurate performance in analyzing
the volume of the hippocampus and frontal lobe of the brain.
Afzali does discuss the downside of partial volume effects and
an increased statistical analysis complexity for VBM, however,
he notes that with modern computing power the second fact
becomes increasingly less significant, and modern techniques
have greatly reduced partial volume effects.

Chung et al [72] introduced a Tensor-based model for

analyzing the brain surface in 2002. Chung applied a diffusion
smoothing operator, based on a Laplace-Beltrami operator,
to the tensors of the cortex and brain stem to determine
local differences. His approach demonstrated that TBM could
detect localized regions of differences on the shapes of two
clinical groups. Wang et al [76] applied a multivariate TBM to
the lateral vents and the hippocampus. Wang demonstrated a
straightforward framework for performing TBM operations on
sub-components of the brain to be used by other researchers.

Lepore at al [74] applied a generalized TBM method to
HIV/AIDs patients to examine differences between the cor-
pus callosum and brain surfaces of individuals. Lepore also
explored the use of multivariate tensors and discussed how
increasing the number of parameters for these tensors could
improve the multivariate statistics. Lepore also comments how
TBM is useful in both registration and statistical analysis,
illustrating the multiple use cases for many brain analysis
applications.

Leow et al [73] proposed using TBM to identify changes
in the brains of aging subjects. Leow’s results showed that in
Alzheimer’s patients, there were reliable brain shape changes
in the tensors over time relative to baseline controls. Leow
also illustrated several methods for correcting distortion in
TBM techniques. Fletcher et al [78] combined TBM and
boundary-based methods to track longitudinal brain changes in
subjects. He compares his method to those that do not involve
boundary detection, and demonstrates how the inclusion of
boundary parameters helps to correct for noise at the tissue
boundaries. His method also helps to remove bias-correction,
which may occur from warping algorithms, and adds only a
minimal performance degradation. Fletcher, like Leow, also
explored the proposition of using TBM to detect Alzheimer’s
in patients. Yang et al [77] used VBM for the application
of Alzheimer’s as well. Yang studied the changes of VBM
measurements in patients over a 3 year period. The study
showed that atrophy clusters in the brain could be detected
in patient’s who had been diagnosed with Alzheimer’s.

Shi et al [79] used TBM to examine the effects of prematu-
rity in the brains of newborns. Different from other methods,
Shi registered the surface fluid of the brain, instead of the
cortex, and applied a TBM approach to this surface fluid.
The statistical analysis showed common clusters of significant
difference between the brains of the subjects. Shi also showed
that the TBM approach was sensitive enough to measure the
largely smooth surface of the surface fluid and discern small,
but meaningful differences.

VIII. ADDITIONAL METHODS OF SHAPE ANALYSIS

Table VII details additional applications of shape analy-
sis. It includes additional methods such as graph-matching,
symmetry-based analysis, Laplace-Beltrami analysis, and vol-
umetric analysis. Many different methods have been applied
as a potential methods of diagnosis or classification.

A. Distance Mapping
Distance mapping is a technique that has similarities to

geodesic distance and medial axis analysis, but differs in
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TABLE VII
AUTOMATED (A) OR SEMI-AUTOMATED (SA) ADDITIONAL METHODS OF SHAPE ANALYSIS: GROUND TRUTH (GT) FROM CLINICIAN (C) OR NON-CLINICIAN (N)

EXPERTS; DIMENSIONALITY (DIM) AND SIZES (#) OF EXPERIMENTAL IMAGE DATABASES.

Method Publication Year Mode Dim # GT
Distance Mapping He et al [82] 2007 SA 2D 10 N
Entropy-based Particle Systems Cates et al [83] 2009 A 3D 56 C
Graph Matching Geraud et al [84] 1995 SA 2D n/a N
Graph Matching Yang et al [85] 2007 A 3D 120 N
Graph Matching Long et al [86] 2012 SA 2D 60 C
Homologous Model Yamaguchi et al [87] 2009 A 3D 4 N
Homologous Model Yamaguchi et al [88] 2010 A 3D 11 N
Laplace-Beltrami Angenent et al [89] 1999 A 3D 1 C
Laplace-Beltrami Lai et al [90] 2011 A 2D 32 N
Laplace-Beltrami Shishegar et al [91] 2011 A 3D 78 C
Laplace-Beltrami Germanaud et al [92] 2012 A 3D 151 N
Reeb Analysis Makram et al [93] 2008 A 3D 12 C
Reeb Analysis Shi et al [94] 2011 A 3D 200 C
Spectral Matching Lombaert et al [95] 2011 A 3D 36 N
Spectral Matching Lombaert et al [96] 2013 A 3D 12 N
Symmetry-based Prima et al [97] 2002 A 3D 250 C
Symmetry-based Gefen et al [98] 2004 A 2D 232 N
Symmetry-based Liu et al [99] 2007 A 2D 3 N
Symmetry-based Feng et al [100] 2008 A 2D 1 N
Symmetry-based Fournier et al [101] 2011 A 3D 37 N
Volume Analysis Herman et al [102] 1988 A 3D n/a N
Volume Analysis Wagenknecht et al [103] 2008 A 3D n/a N

Fig. 13. Method proposed by He et al [82] using distance mapping to
examine areas of significant difference along the outer edge of the corpus
callosum.

that more generalized distance metrics and locations are often
measured. He et al [82] proposed a method of brain analysis
using distance mapping (Fig. 13). He examined the statistical
differences in distances at the border of a segmented corpus
callosum in autistic patients. He hypothesized that a statistical
mean difference between segmented images could be discov-
ered, however he ultimately concluded that no meaningful
statistical difference in shape between subjects could be found
using the proposed method.

B. Entropy-based Particle Systems
Cates et al [83] introduced a novel approach to brain shape

analysis using an entropy-based system. Points are modeled on
the surface of the brain as particles. These particles are then

optimized and the negative energy is measured to create a dis-
tribution of each unique shape. The technique is applicable in
both two and three dimesnions. The computational efficiency
of the approach is based on the number of particles used. Cates
applied the approach to examination of the hippocampus. The
advantages to the technique showed results consistent with
many other techniques, while require a minimum amount of
parameter tuning and an easy adaption to the brain curvature.

C. Graph Matching

Fig. 14. Method proposed by Long et al [86]. Showing areas that have been
discriminated using a graph matching technique in two subjects.

Graph matching techniques involve converting more com-
plex information into a more simplified graph-based repre-
sentation. Similarities in the graphs are then used to identify,
segment and analyze the more complex information. Geraud et
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al [84] proposed a method of graph matching analysis. They
utilized a Markovian relaxation on a watershed based adja-
cency graph to improve segmentation of neighboring structures
in the brain. The results showed a good initial approach to the
application of graph matching in the area of segmentation and
identification.

Yang et al [85] proposed the fact that two graph matching
techniques that can be used to constrain a search neighborhood
and the genetic algorithms can be used to optimize sulci
labeling. They were able to achieve satisfactory identification
rates for finding sulci using the proposed graph matching
strategy.

Long et al [86] suggested that the brain shape could be
decomposed to a graph by subdividing the images into a tree
structure containing various properties of the specific brain
(Fig. 14). By manually selecting important locations for plac-
ing the subdivision structures, the brain could be successfully
classified for cognitive impairment due to Alzheimer’s disease.

D. Homologous Modeling

Fig. 15. Method proposed by Yamaguchi et al [87] illustrating the concept
of homologous modeling on two brains.

Homologous modeling is a mesh based technique in which
items having the same number of analysis points in the same
locations on two different models can be examined. The
technique has been applied to many different applications,
but due to implementation complexity is rarely applied to
the the whole brain. However, it may also be appropriate
for the analysis of other discrete brain structures (e.g. corpus
callosum, amygdala, or hippocampus).

Yamaguchi et al [87] demonstrated a method based on
a homologous model to calculate a sulcal-distribution index
for brains and identify brain fissures (Fig. 15). A mean
displacement of 1.3±0.7mm was found. His results suggested
that a homologous model could be used to correspond the sulci
and gyri among the evaluating brains effectively. Yamaguchi
et al [88] proposed a later method to statistically quantify the
brain shape using a homologous model. The work examined
changes in the frontal and occipital lobes between male and
female subjects. A significant difference (p < 0.05) was
detected in the sample population and the model was able

to successfully detect the locations in the brain that differ
significantly.

E. Laplace-Beltrami
Laplace-Beltrami methods comprise any methods that rely

heavily on the Laplace-Beltrami operator. The Laplace-
Beltrami operator of a smooth function f on a Riemannian
manifold M and is defined as !f = div(gradf), where div
and grad are the divergence and gradient operators of the
manifold M [91]. It is most commonly used in smoothing
applications or curvature analysis.

Angenent et al [89] was the first researcher to propose brain
analysis using a Laplace-Beltrami model. Angenent hypoth-
esized that a brain could be flattened by using a Laplace-
Beltrami operator on the brain surface. The technique was
shown to be an efficient method of flattening the brain.

Lai et al [90] used Laplace-Beltrami nodal curves and
geodesic curve evolutions to segment to the corpus callosum.
In small data tests the method appeared to show positive results
and be robust.

Shishegar et al [91] analyzed the first 20 eignevalues of
the Laplace-Beltrami spectrum to classify epilepsy. In the best
testing results Shishegar acheived a 91.9% true positive rate
and a 33.3% false positive rate using out of normal range
classifiers and cross-validation, illustrating that while there
were issues it was a promising method.

Germanaud et al [92] computed the eigenfunctions of the
Laplace-Beltrami operator to decompose meshes for left and
right handed subjects. Germanaud was able to detect shallow
folds and rare deep folds in the brain which lead to the
quantification and classification of brains using the Spangy
method.

F. Reeb Graph
A Reeb graph describes the connectivity of the level sets

of an object [104]. Visually, a constructed Reeb graph looks
similar to a medial axis skeleton. Makram et al [93] suggested
a method of using Reeb graph analysis to drive an elastic regis-
tration model for the detection of maxilla malformations. The
results of detection were deemed satisfactory to a clinician, but
not actual values were not reported. The method illustrated the
potential for Reeb graph analysis as a registration framework.

Shi et al [94] used reeb graph analysis to isolate, extract,
and reconstruct enhanced brain surfaces. The system was able
to process cortical surfaces with the accuracy of freesurfer, but
at a lower computational cost.

G. Spectral Matching
Lombaert et al [95] proposed a method of spectral corre-

spondence for examining the shape of the brain. He used an
eigendecomposition to match brain surfaces between subjects.
Initially the spectra are computed for each brain. These spectra
are then sorted and aligned. The result allows point locations
between two brains to be quickly matched. The method is
primarily applicable to brain registration. Lombaert et al [96]
proposed an extension of this work for corresponding features
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on the surface of the brain, entitled FOCUSR. Instead of
a generalized matching, surface features of each brain are
used to align them. The primary advantage of FOCUSR over
competing techniques is the speed required to match the brains
to one another. The spectral matching technique required a
mere 208 seconds to achieve the same accuracy as FreeSurfer,
a commercial brain analysis tool, which required several hours.

H. Symmetry Analysis

Fig. 16. As shown by Fournier et al [101], the human brain has a slight
asymmetry based on if subjects are right or left-handed.

Symmetry based techniques exploit the fact that the hu-
man brain is largely symmetric along the sagittal plane, and
use this information to make observations. Prima et al [97]
proposed an early method of symmetry-based brain analysis.
Prima analyzed the brain symmetry to automatically compute
the mid-saggital plane and obtained sub-voxel accuracy in
computing, reorienting and recentering 3D images in a time
efficient manner.

Gefen et al [98] aligned individual brain images along their
symmetry lines to create more accurate 3D models. Gefen
concluded that some regions yielded better restoration in the
3D models than other regions, but overall the alignment results
were accurate and consistent.

Liu et al [99] examined the topic of multi-modality brain
registration by aligning the symmetry planes of objects using
affine transformations. Liu surmised that the test objects were
successfully matched and the symmetry planes were accurately
computed.

Feng et al [100] used the symmetry properties of the brain
to improve brain segmentation algorithms. Feng’s algorithm,
while effective at determining bilateral symmetry, was limited
by only being applicable to 2D images.

Fournier et al [101] examined the asymmetries in brains of
humans and chimpanzees and compared left and right handed
individuals to search for a difference (Fig. 16). Fournier
was able to recover typical global asymmetry patterns and
hypothesized that in the future symmetry-based analysis could
provide an automated way of comparing individuals.

I. Volumetric Analysis
Volumetric techniques measure the volume of an object.

Herman et al [102] proposed a method based on volumetric

analysis to use gradient-based boundary tracking to examine
the volume between control and Alzheimer’s patients. Herman
concluded that the gradient-based methods are superior to
standard thresholding methods, but did not provide a detailed
summary of the diagnostic results.

Wagenknecht et al [103] use another form of volumetric
analysis. Wagenknecht used a 3D Live-wire approach to
extract volumes of interest from a brain for comparison or
identification. An average miscalculation rate less than 0.0039
was reported and the proposed method showed to be accurate
and robust for extracting volumes of interest and calculating
various properties for them.

IX. DISCUSSION

A. Research Challenges
The brain has long been a topic of research, but utilizing

shape analysis with the help of computers enables researchers
to examine the shape and texture of the brain. There are
several major challenges that shape analysis methods related
to the brain or other complex medical structures face going
forward. The brain is a complex and very diverse organ.
Unlike more rigid and well defined objects that may be
simply represented by geometric shapes, the brain suffers from
large irregular variabilities. The lack of overall consistency in
the brain requires techniques that analyze it to be flexible,
and be able to readily adapt to changes in contrast, shape,
varying degrees of noise, and abnormality. This illustrates
why techniques that rely on pre-determined templates or shape
models may suffer from difficulty in brain applications. This
problem of consistency and complexity is the driving issue that
leads to many of the subsequent challenges. These additional
challenges can be summarized as follows:

• Due to the size and complexity of the brain and other
medical objects, mesh based approaches often require a
significantly large number of nodes or points of reference
to perform an accurate surface or shape analysis. Even
with modern computing, the large complexity of the brain
still poses a computational efficiency challenge.

• Medial axis and other skeleton-based analysis may re-
quire a large amount of branches and complex paths to
accurately represent all of the distinct locations in the
human brain.

• The known shape analysis and diagnosis techniques for
the brain largely rely on the accuracy of brain segmen-
tation and the ability to properly determine structures in
the brain. Even with the combination and fusion of mod-
ern techniques (e.g. active contours, deformable models,
SPHARM, geodesic distances), identification and seg-
mentation accuracies still suffer significant errors when
applied to large sets of data.

• Computer Aided Diagnostic, or CAD, systems have faced
great difficulty in accurately classifying neurological dis-
eases based on shape metrics over the past decades. This
is largely due to the lack on inconsistency found across
different subjects, but is also due to the difficulty in
properly registering and aligning brains so that like areas
can be examined.
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B. Comparisons and Trends

While there is a high degree of merit in all applications
of shape analysis to the brain, some techniques are more
suited to specific applications then others. There are four
generalized applications of shape analysis techniques to the
brain: examination of individual sulci and their curvatures
on the brain, examination of the entire human brain and
white matter as a whole, registration of brain shapes amongst
subjects, and examination of the sub-components of the brain
(e.g. corpus callosum, ventricles, hippocampus). Due to the
wide variety of shapes and curvatures in the human brain,
many techniques can be used in an array of different brain
applications. However, it should be highlighted that most of
the techniques are more commonly used in one or two areas.

Geodesic distances, medial axis, skeletal analysis, and
Laplace-Beltrami methods are the most common methods
used for examination of the individual sulci and brain cur-
vature, with geodesic distances between the most prevalent
in modern applications. SPHARM, voxel- and tensor-based
morphometry, volume analysis, symmetry-based modeling and
deformable models are most common for analysis of the brain
and white matter, however, SPHARM is generally reserved
for mesh-based applications, and deformable models are of-
ten preferred for registration and segmentation applications.
While having some uses in whole brain shape analysis, Pro-
crustes analysis, homologous modeling, graph matching, and
symmetry-based modeling are most commonly used for brain
registration and segmentation applications. Voxel- and Tensor-
based morphometry, medial axis, skeletal analysis, SPHARM,
and distance mapping are the most preferable methods for
examination of sub-components of the brain, and while typ-
ically not always used exclusively, geodesic distances are
often combined with these methods. Voxel- and Tensor-based
morphometry and SPHARM also have significant applications
in brain shape registration. It should be specifically noted that
deformable models have a high degree of applicability to all
of the mentioned analysis methods, and are often combined
with or frequently used in many forms of brain shape analysis.

To address the aforementioned challenges, recent trends in
shape analysis of the brain involve the following aspects:

• Many of the methods discussed were initially applicable
to 2-dimensional analysis, but in recent years nearly all
methods have evolved for use in 3-dimensional applica-
tions.

• Deformable model methods [49], [50], [51] have seen an
increase in usage and have additionally taken the place of
many segmentation methods in the past five years, leading
to an improved accuracy in brain segmentation. These
advances will undoubtedly help to push forward new and
improved shape analysis techniques.

• More complex techniques such as SPHARM, started
by Gerig et al [57], have been further developed by
others [61], [64], [62], [65], [66] in recent years have
shown great promise in advancing the field for analysis
of the cortex and white matter, along with analysis of sub-
components of the brain. These methods have illustrated
the potential for utilizing methods that are parameter

invariant to solve many of the difficult alignment and
registration errors that are often associated with the brain.

• Automation has become increasingly important in mod-
ern methods, and the rate of semi-automated and manual
methods has drastically decreased. Modern methods are
generally expected to perform in an automated manner,
and the reduction in human interaction has resulted in an
increase in the accuracy of newer techniques.

• Methods such as medial axis analysis [18] and geodesic
distances [30] are now more frequently combined with
other techniques leading to more accurate segmentation,
registration and classification of the human brain and its
various subcomponents, such as the ventricles and corpus
callosum.

X. CONCLUSION

This survey details the numerous methods for solving the
complex problem of brain shape analysis. Early techniques,
which suffered from lower accuracies, slow computation
times, and significant user input, have given rise to com-
plicated modern techniques that offer high degrees of au-
tomation and improved accuracy. Methods such as SPHARM,
deformation-based morphometry, and deformable models will
likely become the dominant modes of brain shape analysis
going forward. Geodesic distances, medial axis, and Laplace-
Beltrami operations, among others, will become methods
used to support and enhance these dominant modes of brain
shape analysis. An amalgamation of techniques opens new
opportunities for researchers and engineers to develop more
advanced analysis methods. Exciting new opportunities, such
as HyperSPHARM and 4-dimensional analysis techniques,
give us a look into the future of where modern techniques
and amalgamations may be headed. In conclusion, the future
of the field of shape analysis for the brain is evolving rapidly,
and new techniques will develop and emerge as technology
continues to progress.
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