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ABSTRACT
This paper presents a novel approach for extracting the brain
from 3D T1-weighted MR images. The proposed approach
combines a stochastic two-level Markov-Gibbs random field
(MGRF) image model with a geometric model that parcels the
brain into a set of nested iso-surfaces using a fast marching
level setmethod. The classification of each brain voxel found
on the iso-surfaces is performed based on the first-order (a
linear combination of discrete gaussian (LCDG) model) and
second-order (an MGRF model with analytically estimated
parameters) visual appearance features of the brain structures.
Our approach is tested on 280 infant 3D MR brain scans and
evaluated on 9 data sets using the Dice coefficient, the 95-
percentile modified Hausdorff distance, and absolute brain
volume difference. Experimental results showed that the fu-
sion of the stochastic and geometric models of brain MRI data
has led to more accurate brain extraction, when compared
with other widely-used brain extraction tools, such as BET,
BET2, and brain surface extractor (BSE).

Index Terms— Brain extraction, skull stripping, MRI,
MRFs, BET, Iso-surfaces, infant

1. INTRODUCTION

Brain extraction is the process of removing all the outer tis-
sues (e.g. eyes, dura, scalp, and skull) around the brain which
consists of the gray matter (GM) and white matter (WM),
while the inclusion of cerebrospinal fluid (CSF) in the brain
depends on the application. Brain extraction is a primary step
in neuroimaging analysis as well as a pre-processing step for
many brain analysis algorithms like intensity normalization,
registration, classification, and segmentation. Accordingly,
accurate brain extraction is crucial for these algorithms to
work properly. For instance, in cortical thickness estimation,
inaccurate skull stripping (e.g. failing to remove the dura or
missing brain parts) can result in an overestimation or under-
estimation of the cortical thickness [1].

Many brain extraction approaches are designed to work
on T1-weighted MR brain images. These methods use differ-
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Fig. 1. T1-weighted MRI for (a) adult and (b) infant brains.

ent techniques, such as, deformable models, atlas-based and
label fusion, and hybrid algorithms. For deformable model
approaches, Smith [2] developed an automated method,
which is widely known as brain extraction tool (BET), where
the deformable contour is guided by a set of locally adaptive
forces, which include morphological and image-based terms
in addition to a surface smoothness constraint. Liu et al. [3]
presented another automated brain extraction method using a
deformable model based on a set of Wendland’s radial basis
functions. Also, Zhuang et al. [4] used a model-based level
set based on two forces: the mean curvature of the curve
and the intensity characteristics of the cortex in MR images.
For atlas-based and label fusion approaches, Ashburner and
Friston [5] used a voxel-based morphometry which involves
a voxel-wise comparison of the local concentration of gray
matter between two groups of subjects. Leung et al. [6] pre-
sented a multi-atlas propagation and segmentation method
using a template library-based segmentation technique. For
hybrid approaches, Iglesias et al. [7] developed a learning-
based brain extraction system which combines two models:
a discriminative model based on a random forest classifier
trained to detect the brain boundary and a generative model
based on finding the contour with highest likelihood accord-
ing to the discriminative model which is refined later using
graph cuts. Segonne et al. [8] presented a hybrid approach
that combined watershed algorithms and deformable surface
models. Rex et al. [9] developed a meta-algorithm that ex-
ecutes many brain extraction algorithms and a registration
procedure followed by an approach to combine the results.

In summary, different brain extraction approaches have
been developed; however, the existing approaches have their
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own drawbacks. Some of them give better results when re-
moving non-brain tissue while losing some brain parts, and
others give better results when extracting the whole brain
while keeping some non-brain tissue parts [10, 11]. Atlas-
based approaches are very time consuming and their perfor-
mance heavily depends on the registration accuracy and the
spatial correspondence between the atlas and the test subject,
in addition to the difficulty of constructing an infant brain
atlas [12]. The majority of the existing techniques are devel-
oped to work for adult MR brain images and fail to accurately
extract the brain from MR infant images due to the reduced
contrast and higher noise [13] (see Fig. 1).

To overcome the mentioned limitations, we present a hy-
brid framework that possesses the ability to accurately ex-
tract brain tissue from infant MR brain images. The pro-
posed framework integrates both stochastic and geometric ap-
proaches and consists of four basic steps: (i) bias correction,
(ii) skull stripping, and (iii) final brain extraction using an
iso-surfaces approach guided by a joint joint Markov-Gibbs
random field (MGRF) model image model that integrates the
visual appearance features of the MR brain images. Details
of our framework are described in the following section.

2. BIAS CORRECTION

Illumination non-uniformity of infant brain MRIs, which is
known as bias field, limits the accuracy of the existing brain
extraction approaches. Therefore, to accurately extract the
brain, it is important to account for the low frequency in-
tensity non-uniformity or inhomogeneity. In this work, we
used the generalized Gauss-Markov random field (GGMRF)
model [14, 15] that is applied after brain intensity normaliza-
tion using the nonparametric approach proposed in [16]. This
step accounts for illumination non-uniformity and noise ef-
fects and removes (smooth) inconsistencies of the brain MR
images by accounting for the spatially homogeneous 3D pair-
wise interactions between the gray levels of the MR data.
Namely, the gray level values q ∈ Q = {0, . . . , Q − 1} are
considered as samples from a 3D GGMRF model [14, 15] of
measurements with the voxel 26-neighborhors. The continu-
ity of q values of each brain MR scan is amplified by using
their maximum A posteriori (MAP) estimates [14, 15] and
voxel-wise stochastic relaxation (iterative conditional mode
(ICM) [17]):

q̂s = argmin
q̃s

[
|qs − q̃s|α + ραλβ

∑

r∈νs

ηs,r |q̃s − qr|β
]

(1)

where qs and q̃s denote the original gray level values and their
expected estimates, respectively, at the observed 3D location,
s = (x, y, z); νs is the 26-neighborhood voxel set; ηs,r is the
GGMRF potential, and ρ and λ are scaling factors. The pa-
rameter β ∈ [1.01, 2.0] controls the level of smoothing (e.g.,
β = 2 for smooth vs. β = 1.01 for relatively abrupt edges).
The parameter α ∈ {1, 2} determines the Gaussian, α = 2, or

Laplace, α = 1, prior distribution of the estimator. To demon-
strate the effect of the first step of the proposed framework,
an example of the original, and bias-corrected (intensity nor-
malization and GGMRF edge preservation) brain MR data is
shown in Fig. 2 (a), (b), and (c), respectively.

3. SKULL STRIPPING

The second step of the proposed framework after bias correc-
tion is to remove the non-brain tissue from the MR images.
To accomplish this, we used the BET [2], which uses a de-
formable model-based approach to remove the skull from
MR brain images. [2]. The initial brain extraction result of
Fig. 2 (c) after the BET is shown in Fig. 2 (d). While, the
BET extracted the whole brain without losing any brain parts,
it fails to remove all non-brain tissues (parts of the skull and
the extra-cranial tissues are classified as brain tissue). For
some clinical applications, such as cortical thickness mea-
surement, inaccurate skull stripping results in an over- or
under-estimation of the thickness. Therefore, it is important
to account for the inaccurate skull stripping results after the
BET step.

4. VISUAL APPEARANCE-GUIDED ISO-SURFACES

In order to obtain more accurate brain extraction results, we
propose an additional processing step based on the geometric
features of the brain to account for BET’s skull stripping er-
rors. Since the non-brain tissues are brighter than brain tissue,
this step exploits the visual appearance features of the MR
brain data. Namely, an evolving iso-surfaces-based approach
is proposed to remove the non-brain tissues, which is guided
by the visual appearance features of the MR data. First, a set
of nested, tangent surfaces (i.e., iso-surfaces) are generated
by the fast marching level set (FMLS) approach [18], using
the extracted brain from the BET step. In order to accurately
classify MRI voxels as brain or non-brain, we need to accu-
rately model MR data visual appearance. To achieve this goal,
we will use a joint MGRF model image model, where the 3D
T1-weighted MR brain images, g, and its region map, m, are
described with the following joint probability model:

P (g,m) = P (g|m)P (m) (2)

where P (m) is an unconditional probability distribution of
maps, and P (g|m) is a conditional distribution of the images
given the map. The ultimate goal is to accurately estimate
P (g|m) and P (m), which are described next.
First-order visual appearance (P (g|m)): To accurately ap-
proximate the marginal probability distributions of the brain
and non-brain tissue, the empirical gray level distribution of
a given g distribution is precisely approximated with a lin-
ear combination of discrete Gaussians (LCDG) with positive
and negative components [19–21]. The LCDG restores brain
and non-brain transitions more accurately than a conventional
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Fig. 2. Step-wise brain extraction using the proposed framework: (a) the original MR image, (b) the bias-corrected image, (c)
the GGMRF-smoothed image obtained with ρ = 1, λ = 5, β = 1.01, α = 2, and ηs,r =

√
2, (d) the extracted brain using

BET [2], (e) the iso-surfaces used to remove non-brain tissues, and (f) the final extracted brain.

mixture of only positive Gaussians, thus yielding a better ini-
tial brain map (m) formed by voxel-wise classification of the
image gray values.
Second-order visual appearance (P (m)): In order to over-
come noise effect and to ensure the homogeneity of the seg-
mentation, the spatial voxel interactions between the region
labels of a given brain map m are also taken into account
using the popular Potts MGRF model. Let R and fa,eq(m)
denote a 3D arithmetic lattice that supports g and m, and the
relative frequency of the equal label pairs in the equivalent
voxel pairs {((x, y, z), (x + ξ, y + ζ, z + κ)): (x, y, z) ∈
R; (x + ξ, y + ζ, z + κ) ∈ R; (ξ, ζ,κ) ∈ νs. The ini-
tial region map m results in approximate analytical maxi-
mum likelihood estimates of the potentials [22, 23]: veq =
−vne ≈ 2feq(m)− 1; which allow for computing the voxel-
wise MGRF probabilities px,y,z(mx,y,z = λ) of each brain
label; λ ∈ L = {“brain”, “non-brain”} [24, 25]. In total, Al-
gorithm 1 summarizes the basic steps of the proposed frame-
work for brain extraction.

5. EXPERIMENTAL RESULTS AND CONCLUSIONS

To measure the robustness and performance of our approach,
we applied our method to 280 T1-weighted MR infant brain
data sets which were obtained from the Infant Brain Imag-
ing Study (IBIS) [26], and evaluated using 9 data sets with
known manually segmented ground truth that were obtained
by an MR expert. MR data was acquired at 3T and consists
of T1- and T2-weighted MR images of infants scanned at ap-
proximately 6 months old with voxel size of 1×1×1 mm3.

A step-wise brain extraction using the proposed approach
for a selected axial cross-section of one subject is demon-
strated in Fig. 2. The input MR image (Fig. 2(a)) is first bias
corrected (intensity normalized Fig. 2 (b)) and GGMRF [14,
15] edge preservation (Fig. 2 (c)). This is followed by an ini-
tial brain extraction using BET [2] (Fig. 2 (d)). Then, the pro-
posed iso-surfaces based approach is employed to achieve the
final segmentation as shown in Fig. 2 (f). It is clear from the
results in Fig. 2 that the proposed framework provides more
accurate infant brain extraction than BET.

The performance of the proposed framework was evalu-
ated using three performance metrics: (i) the Dice similarity

Algorithm 1 Proposed brain extraction approach
1 Correct the bias of the MR brain data.

(a) Brain intensity normalization [16].
(b) GGMRF edge preservation [14, 15].

2 Strip the skull using BET [2].
3 Estimate the LCDG models for the brain and non-brain tis-

sues using the results in Step 2.
4 Form an initial map m by voxel-wise classification using

the LCDG models found in Step 3
5 Estimate analytically the Gibbs potentials for the pair-wise

MGRF model of m to identify the MGRF probability.
6 Calculate the distance map (Fig. 2 (e)) inside the binary

mask obtained from BET using FMLS [18].
7 Generate a set of N nested, tangent iso-surfaces (Fig. 2 (e))

using the distance map calculated in Step 6.
8 while j ≤ N

(a) Select the jth iso-surfacer and classify its voxels us-
ing a Bayes classifier combining the first and second-
order visual appearance features.

(b) Are all the voxels on the selected iso-surfaces classi-
fied only as brain tissue?
• No −→ Go to Step 8 (a).
• Yes −→ Break

9 Apply connected component analysis and 3×3×3 median
filtering to obtain the final results.

coefficient (DSC) [27], (ii) 95-percentile modified Hausdorff
distance (MHD) [28], and (iii) absolute brain volume differ-
ence (ABVD). All metrics were obtained by comparing brain
extraction results against the 9 data sets with available ground
truth segmentation. As demonstrated in Table 1, the mean
DSC, MHD, and ABVD values for our automated segmen-
tation of the whole brain are 95.86±0.77%, 6.32±2.26 mm,
and 3.76±2.52%, respectively. This confirms the high accu-
racy of the proposed segmentation technique.

To highlight the advantage of the proposed framework we
compared its performance to three widely-used brain extrac-
tion tools: the brain surface extractor (BSE) [29], BET [2],
and BET2 [30]. The comparative accuracy of the proposed
approach versus the BSE, BET, and BET2 techniques on
representative images for 3 subjects is shown in Fig. 3. As
demonstrated in Fig. 3, our approach extracted the brain
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Table 1. Comparative accuracy of our segmentation versus
the methods in [2, 29, 30] by the DSC, MHD, and ABVD on
9 data sets with available ground truth (”M ”– Mean and ”SD
”– standard deviation).

Metric

DSC (%) MHD (mm) ABVD (mm3)

Method M±SD p-value M±SD p-value M±SD p-value

OUR 95.86±0.77 —— 6.32±2.26 —— 3.76±2.52 ——

BSE [29] 93.17±1.44 0.0001 13.13±5.75 0.0007 5.64±2.11 0.0118

BET2 [30]) 91.83±3.63 0.0049 13.80±6.74 0.0075 10.78±8.73 0.0137

BET [2] 91.80±3.42 0.0035 14.13±7.20 0.0099 10.58±8.33 0.0119

tissue more accurately compared with the BET and BET2
approaches. The lower performance of the BET [2] could be
caused by its sensitivity to image noise and inhomogeneity,
because this method relies only on voxels’ intensity changes
and does not account for spatial voxel interactions. On the
other hand, the BET2 approach [2] slightly improves the
brain extraction accuracy compared with the BET one. How-
ever, unlike the BET and our approach, the BET2 technique
requires both T1-and T2-weighted MR images. Moreover,
BSE [29] succeeds in accurately removing the skull but it
removes small parts from the bain tissues as well, which may
lead to inaccurate results for some clinical application (e.g.
cortical thickness under-estimation). Table 1 compares our
approach with the BSE, BET, and BET2, based on the DSC,
MHD, and ABVD metrics for all the 9 data sets. As doc-
umented in Table 1, our approach performs notably better,
according to its higher DSC and ABVD values and lower
MHD value. Statistical significance of the better performance
of our approach with respect to other methods is confirmed
by the paired t-tests (p-values are less than 0.05).

In conclusion, this paper have introduced a novel frame-
work for automated extraction of the brain from 3D infant
MR images. Our experiments show that the fusion of first-
and second-order visual appearance features of the MR brain
data leads to more accurate brain extraction, when compared
with widely-used brain extraction tools: BSE, BET, and
BET2. The results were evaluated using the Dice similarity
coefficient (DSC), 95-percentile modified Hausdorff distance
(MHD), and the absolute brain volume difference (ABVD)
on a cohort of 9 infant MR brain data sets.
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