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Abstract—In this paper, we propose a novel framework for
the automated extraction of the brain from T1-weighted MR im-
ages. The proposed approach is primarily based on the integra-
tion of a stochastic model [a two-level Markov–Gibbs random
field (MGRF)] that serves to learn the visual appearance of the
brain texture, and a geometric model (the brain isosurfaces) that
preserves the brain geometry during the extraction process. The
proposed framework consists of three main steps: 1) Following
bias correction of the brain, a new three-dimensional (3-D) MGRF
having a 26-pairwise interaction model is applied to enhance the
homogeneity of MR images and preserve the 3-D edges between
different brain tissues. 2) The nonbrain tissue found in the MR
images is initially removed using the brain extraction tool (BET),
and then the brain is parceled to nested isosurfaces using a fast
marching level set method. 3) Finally, a classification step is ap-
plied in order to accurately remove the remaining parts of the
skull without distorting the brain geometry. The classification of
each voxel found on the isosurfaces is made based on the first-
and second-order visual appearance features. The first-order vi-
sual appearance is estimated using a linear combination of discrete
Gaussians (LCDG) to model the intensity distribution of the brain
signals. The second-order visual appearance is constructed using
an MGRF model with analytically estimated parameters. The fu-
sion of the LCDG and MGRF, along with their analytical estima-
tion, allows the approach to be fast and accurate for use in clinical
applications. The proposed approach was tested on in vivo data
using 300 infant 3-D MR brain scans, which were qualitatively val-
idated by an MR expert. In addition, it was quantitatively validated
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using 30 datasets based on three metrics: the Dice coefficient, the
95% modified Hausdorff distance, and absolute brain volume dif-
ference. Results showed the capability of the proposed approach,
outperforming four widely used BETs: BET, BET2, brain surface
extractor, and infant brain extraction and analysis toolbox. Exper-
iments conducted also proved that the proposed framework can be
generalized to adult brain extraction as well.

Index Terms—BET, infant brain, isosurfaces, LCDG, MGRF,
MRI, skull stripping.

I. INTRODUCTION

BRAIN extraction is the process of removing all the outer
tissues (e.g., eyes, dura, scalp, and skull) around the brain,

which consists of the gray matter and white matter (WM), while
the inclusion of cerebrospinal fluid in the brain depends on the
application. Brain extraction is a primary step in neuroimaging
analysis as well as a preprocessing step for many brain analysis
algorithms like intensity normalization, registration, classifica-
tion, and segmentation. Accordingly, accurate brain extraction
is crucial for these algorithms to work properly. For instance,
in cortical thickness estimation, inaccurate skull stripping (e.g.,
failing to remove the dura or missing brain parts) can result in an
overestimation or underestimation of the cortical thickness [1].
Extraction of brains from adult scans is a difficult process, yet
is more challenging in the case of infants due to many factors
including the difference in size of the corresponding anatomy,
and the variability in the properties of the signal acquired. This
explains the fact that most of the work in the literature is devoted
to brain extraction from adult scans, and that fewer techniques
are focused on infant brain extraction.

Many brain extraction approaches have been developed to
extract the brain from T1-weighted MR brain images. These
methods use different techniques, such as, region growing, de-
formable models, atlas-based and label fusion, and hybrid al-
gorithms. Park and Lee [2] automatically identified two seed
points of the brain and nonbrain regions using morphological
operations. Then, two-dimensional (2-D) region growing was
employed based on the knowledge of brain anatomy. This was
extended by Roura et al. [3], where a multispectral adaptive
region growing algorithm was proposed. This enabled the use
of the approach proposed in [2] to axial views and provided
more reliable results for different patient populations and dif-
ferent MRI scanners (1.5 and 3 T). Smith [4] developed an
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automated deformable model-based method, which is widely
known as the brain extraction tool (BET). In their approach, the
deformable contour is guided by a set of locally adaptive forces,
which include morphological and image-based terms in addi-
tion to a surface smoothness constraint. Liu et al. [5] presented
another deformable model-based brain extraction method using
a set of Wendland’s radial basis functions [6]. Their deformable
model is directed by an internal force to consider the smooth-
ness constraint and an external force to impose the intensity
contrast across the boundaries. Finally, the brain contours are
constructed by integrating the 2-D coronal and sagittal slices that
were separately computed to obtain a complete 3-D brain vol-
ume. Also, Zhuang et al. [7] used a level-set-based deformable
model that combines two forces: the mean curvature of the
curve and the intensity characteristics of the cortex in MR im-
ages. Baillard et al. [8] developed a deformable model-based
approach to find the brain surface. As an alternative solution for
initializing the first contour manually, an atlas-based technique
is used to make the brain extraction process entirely automatic.
After atlas registration and initial segmentation, the brain is fi-
nally segmented based on level sets with adaptive parameters
depending on the input data. Wang et al. [9] used an atlas-based
approach for skull stripping, along with a deformable-surface-
based approach guided by local intensity information and prior
information that is learned from a set of real brain images.
Sadananthan et al. [10] presented a skull-stripping approach
using graph cuts, which consists of two steps. An initial brain
mask is generated using intensity thresholding as a first step.
Then, a graph-theoretic image segmentation method is applied
to position cuts which remove narrow connections. Zhang et al.
[11] developed a method for brain extraction by estimating im-
age intensity parameters to construct a binary image of the head.
Then, an initial contour is estimated. The final brain is extracted
using an improved geometric active contour model which ex-
tends the solution of the boundary leakage problem to make it
insusceptible to the inhomogeneity of intensity. Somasundaram
and Kalavathi [12] developed a contour-based method to seg-
ment the brain from T1-, T2-, and proton density-weighted MRI
of human head scans in two phases. The first phase involves the
extraction of brain regions in the middle slice, with a landmark
circle drawn at the center of the extracted brain region. The
second phase extracts brain regions in the rest of the slices with
reference to that landmark circle. Leung et al. [13] presented
a brain extraction technique using a template library. Multiple
best-matched atlases are selected by comparing the target image
to all the atlases in that library. In order to segment the target im-
age optimally after image registration, label fusion techniques
do the task of combining the labels from all atlases incorporated.
Iglesias et al. [14] developed a learning-based brain extraction
algorithm that has two models: a discriminative model based
on a random forest classifier trained to detect the brain bound-
ary, and a generative model based on finding the contour with
highest likelihood according to the discriminative model, which
is refined later using graph cuts. Segonne et al. [15] presented
a hybrid approach that combines watershed algorithms and de-
formable surface models. The watershed, with a preflooding
height, construct an initial estimate of the brain volume us-

Fig. 1. T1-weighted MRI axial views for (a) adult and (b) infant brains.

ing a single WM voxel as a global minimum. Then, a surface
deformation process is used to correct the initial segmenta-
tion inaccuracies. A statistical atlas is used finally to poten-
tially correct the segmentation. Beare et al. [16] introduced
marker-based watershed scalper for brain extraction in T1-
weighted MR images that is built using filtering and seg-
mentation components from the insight toolkit framework.
Rex et al. [17] developed a metaalgorithm that uses four
freely available brain extraction algorithms: brain surface ex-
tractor (BSE) [18], BET [4], 3dIntracranial [19], and MRI
watershed from FreeSurfer [20]. For extracting the brain,
an atlas is used to define which extraction algorithm or
combination of extractors works best defining the brain in each
anatomic region.

As mentioned earlier, there has not been much work in the
literature addressing infant brain extraction. To the best of our
knowledge, we are briefly presenting all the existing techniques.
Chiverton et al. [21], for example, used parameter estimation to
fit a Gaussian model to a predefined histogram. The extraction
process then employed 3-D morphological operators. Another
approach was proposed by Kobashi et al. [22], where connected
triangles were used in order to construct an initial surface model,
to be deformed by moving the vertices. Fuzzy rules were used to
define the positions of the triangles. Pport et al. [23] presented
an approach called hybrid skull stripping. A binary mask was
generated using morphological operators to define the brain tis-
sue outer boundary, which was later followed by region growing
and edge detection. In order to improve the accuracy, a unique
threshold value was identified for each slice in the volume us-
ing k-means clustering. Shi et al. [24] applied multiple brain
extractions using BET and BSE on test subjects, where the pa-
rameters of each technique are learned from the training data.
Also, the representative subjects are selected as exemplars and
used to guide brain extraction of new subjects in different age
groups. A level-set-based fusion method was further used to
combine the multiple brain extractions in order to get the final
result.

In summary, different brain extraction approaches have been
developed; however, they have their own drawbacks. Some of
them give better results when removing nonbrain tissue while
losing some brain parts, and others give better results when ex-
tracting the whole brain while keeping some nonbrain tissue
parts [25], [26]. Atlas-based approaches are very time consum-
ing and their performance heavily depends on the registration
accuracy between the atlas and the test subject, in addition to the
difficulty of constructing an infant brain atlas [27]. Moreover,
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Fig. 2. Basic steps of the proposed framework for brain extraction from infant MR brain data.

the majority of the existing methods are developed for adult MR
brain images and fail to accurately extract the brain from MR
infant images due to the reduced contrast and higher noise [28].
Infant brain MRI extraction meets with challenges stemming
from image noise, inhomogeneities, artifacts, and discontinu-
ities of boundaries arising from similar visual appearance of
adjacent brain structures (see Fig. 1). Furthermore, accurate in-
fant brain extraction contributes much to the analysis, treatment,
and early diagnosis of brain injury and disorders resulting from
the infant prematurity.

II. METHODS

We present a hybrid framework, as shown in Fig. 2, that
possesses the ability to accurately extract brain tissue from in-
fant MR brain images. The proposed framework integrates both
stochastic and geometric approaches and consists of three ba-
sic steps: 1) bias correction and inhomogeneity enhancement,
2) initial skull stripping and isosurfaces generation, and 3) fi-
nal brain extraction using the visual appearance features of the
MR brain images. The proposed approach avoids many of the
shortcomings of the methods presented in the literature. One of
the main advantages of it is that it does not require shape priors.
Moreover, it is not atlas-based, and thus, its accuracy is not af-
fected by any related processes, such as registration. Also, the
integration of geometric features guarantees retaining all brain
parts. Inaccurate skull stripping can drastically affect subsequent
processes, such as shape analysis for diagnosis of autism [29].

The proposed approach aims at handling all sources of such
inaccuracies. Details of the proposed approach are outlined in
the following sections.

A. Bias Correction and Inhomogeneity Enhancement

Illumination nonuniformity of infant brain MRIs, which is
known as bias field, limits the accuracy of the existing brain ex-
traction approaches. Therefore, to accurately extract the brain, it
is important to account for the low-frequency intensity nonuni-
formity or inhomogeneity. In this paper, we use a 3-D general-
ized Gauss–Markov random field (GGMRF) model [30] that is
applied after bias correction of the brain using the nonparametric
approach proposed in [31]. This step reduces noise effects and
removes (smooth) inconsistencies of the MRI data by account-
ing for the 3-D spatially homogeneous pairwise interactions
between the gray levels of the MRI data. Namely, the gray-level
values q ∈ Q = {0, . . . , Q − 1} are considered as samples from
a 3-D GGMRF model [30] represented for the 26-neighborhood
of a voxel. The maximum a posteriori estimates [30] and vox-
elwise stochastic relaxation (iterative conditional mode [32]) of
q values of each brain MR scan are employed as follows:

q̂s = arg min
q̃s

[
|qs − q̃s |α + ραλβ

∑

r∈νs

ηs,r |q̃s − qr |β
]

(1)

where qs and q̃s are the original gray-level values and their ex-
pected estimates, respectively, at the observed 3-D location,
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Fig. 3. (a) Typical MR infant brain images, and (b) estimated density (c) using only two dominant Gaussian components, (d) deviation between empirical and
estimated densities, (e) estimated density of absolute deviation, (f) LCDG components, (g) final estimated density, and the (h) final estimated marginal density for
each class.

s = (x, y, z); νs is the 26-neighborhood system; ηs,r is the
GGMRF potential, and ρ and λ are scaling factors. The param-
eter β ∈ [1.01, 2.0] controls the level of smoothing (e.g., β = 2
for smooth versus β = 1.01 for relatively abrupt edges). The pa-
rameter α ∈ {1, 2} determines the Gaussian, α = 2, or Laplace,
α = 1, prior distribution of the estimator. In Fig. 2, Step 1
demonstrates the effect of preprocessing of our framework.

B. Initial Skull Stripping and Isosurfaces Generation

The second step of the proposed framework is to initially re-
move the nonbrain tissue from the MR images. To accomplish
this, we used the BET [4] technique, which is a widely used
deformable model-based approach for stripping the skull from
brain MRIs. The process of skull stripping is very sensitive to
the assigned BET factor. Using a high value would result in
removing most of the undesired nonbrain tissues, yet losing de-
tails of the brain tissues. On the other hand, a lower BET factor

would preserve most of the brain tissues as well as nonbrain
tissues. The BET factor used for best results was 0.38. In Fig. 2,
Step 2(a) demonstrates the idea. While the BET extracted the
brain without losing any of its parts using the assigned BET
factor, it failed to remove all nonbrain tissues. For some clinical
applications, such as cortical thickness measurement, inaccu-
rate skull stripping results in an over- or underestimation of the
thickness. This can drastically affect further analysis, such as
feature extraction needed for abnormality detection. Therefore,
it is important to account for inaccurate skull-stripping results
after the BET step. To achieve this, we propose an additional
processing step based on the geometric features of the brain
to account for BET’s skull-stripping errors. Since the nonbrain
tissues are brighter than brain tissue, this step exploits the visual
appearance features of the MR brain data. Namely, an evolving
isosurface-based approach is proposed to remove the nonbrain
tissues, which is guided by the MR data visual appearance fea-
tures [see Fig. 2, Steps 2(b)–(c)]. First, a set of nested tangent

Authorized licensed use limited to: University of Louisville. Downloaded on March 13,2024 at 13:29:04 UTC from IEEE Xplore.  Restrictions apply. 



Infant Brain Extraction in T1-Weighted MR Images www.neurospectruminsights.com

ALANSARY et al.: INFANT BRAIN EXTRACTION IN T1-WEIGHTED MR IMAGES USING BET AND REFINEMENT USING LCDG AND MGRF 929

Fig. 4. (a) Graphical illustration for the 3-D neighborhood system and (b) a
sample of the different pairwise cliques for the second-order MGRF.

Fig. 5. Segmentation errors calculation between the segmented and ground
truth objects for the determination of the DSC.

Fig. 6. Schematic illustration for the HD calculation.

surfaces (i.e., isosurfaces) is generated by the fast marching
level sets (FMLS) [33], using the calculated distance map of
the extracted brain from the BET step. Then, classification of
voxels as brain or nonbrain is conducted and is presented in the
following section.

C. Modeling Visual Appearance Using 3-D Joint MGRF

In order to classify MRI voxels as brain or nonbrain, we
need to accurately model MR data visual appearance. To
achieve this goal, we will use a 3-D joint Markov–Gibbs ran-
dom field (MGRF) model, which is described as follows. Let
Q = {0, . . . , Q − 1} and L = {“brain”,“nonbrain”} denote the
sets of gray levels q and region labels L, respectively. Let R
denote a 3-D arithmetic lattice supporting a given gray-scale
image g : R → Q and its region map m : R → L. The 3-D
T1-weighted MR images g and its map m are described with
the following joint probability model:

P (g,m) = P (g|m)P (m) (2)

Fig. 7. 3-D schematic illustration for the ABVD estimation.

Fig. 8. Stepwise brain extraction using our framework: (a) Original MR image,
(b) bias-corrected image, (c) GGMRF-edge preserved image obtained with
ρ = 1, λ = 5, β = 1.01, α = 2, and ηs ,r =

√
2, (d) extracted brain using

BET [4], (e) isosurfaces used to remove nonbrain tissues, and (f) final extracted
brain.

where P (m) is an unconditional probability distribution of
maps, and P (g|m) is a conditional distribution of the images
given the map. The ultimate goal is to accurately estimate
P (g|m) and P (m), which are described next.

1) First-Order Visual Appearance P (g|m): To accurately
approximate the marginal probability distributions of the brain
and nonbrain tissue, the empirical gray-level distribution of a
given brain data is precisely approximated with a linear combi-
nation of discrete Gaussians (LCDG) with positive and negative
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Fig. 9. More stripping results for different cross sections from different sub-
jects showing reliable brain extraction using the proposed approach.

components [34]. The LCDG restores brain and nonbrain tran-
sitions more accurately than a conventional mixture of only
positive Gaussians. This results in obtaining a better initial map
m formed by voxelwise classification of the image gray values.
Next, the LCDG is explained in more details.

Let Ψθ = (ψ(q|θ) : q ∈ Q) defines a discrete Gaussian
(DG),1 where θ = (µ,σ), integrating a continuous 1-D Gaussian
density with mean µ and variance σ2 over successive gray-level
intervals [34]. The LCDG with two dominant positive DGs and
Mp ≥ 2 positive and Mn ≥ 0 negative subordinate DGs is de-
fined as [34]

Pw ,Θ (q) =
M p∑

i=1

wp:iψ(q|θp:i) −
M n∑

j=1

wn:jψ(q|θn:j ) (3)

1A DG Ψθ = (ψ(q|θ) : q ∈ Q) with θ = (µ, σ2 ) is defined as ψ(q|θ) =
Φθ (q + 0.5) − Φθ (q − 0.5) for q = 1, . . . , Q − 2, ψ(0|θ) = Φθ (0.5), and
ψ(Q − 1|θ) = 1 − Φθ (Q − 1.5), where Φθ (q) is the cumulative Gaussian
function with the mean µ and the variance σ2 .

Fig. 10. 3-D results of the proposed approach on two independent infant
subjects projected into the axial, coronal, and sagittal views.

Fig. 11. Comparative infant brain extraction results for three independent
subjects: (a) ground truth images and the brain extraction results obtained using
(b) the proposed and (c) the iBEAT [24] techniques.
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Fig. 12. 3-D visualization of the segmented brain tissue for three different subjects using (a) our approach, (b) BET [4], (c) BET2 [40], (d) BSE [18], and
(e) iBEAT [24].

where all the weights w = [wp:i , wn:j ] are nonnegative and
meet an obvious constraint

∑M p
i=1 wp:i −

∑M n
j=1 wn:j = 1. All

the LCDG parameters, including the numbers of DGs, are es-
timated from the mixed empirical distribution to be modeled
using the modified expectation-maximization-based algorithm
introduced in [35].

The marginal intensity distributions of the MR infant images
have two dominant modes: one mode for brain tissues, and a
second mode for nonbrain tissues. Fig. 3 shows the steps to
build the LCDG models of the two modes. First, the marginal
empirical probability distribution of the input gray-level im-
ages [see Fig. 3(a) are collected [see Fig. 3(b)]. Then, the
obtained empirical distribution is approximated with a mix-
ture of two positive DGs relating each to a dominant mode
[see Fig. 3(c)]. Second, the deviations between the empirical
and estimated distributions [see Fig. 3(d)] are approximated
with the alternating “subordinate” components of the LCDG
described in [35]. Finally, the obtained positive and negative
subordinate mixtures [see Fig. 3(f)] are added to the dominant
mixture yielding the final mixed LCDG model [see Fig. 3(g)],
which is partitioned into two LCDG submodels [one per class,
see Fig. 3(h)] by incorporating the subordinate DGs with the
dominant terms so that the misclassification rate obtained is
minimal [34].

2) 3-D Second-Order Visual Appearance (P (m)): In order
to overcome noise effect and to ensure segmentation homo-
geneity, the spatial interactions between the region labels of a
brain map m are also considered using Potts MGRF model.
This model is identified using the nearest voxels’ 26-neighbors
[see Fig. 4(a)] and analytical bivalued Gibbs potentials [see

Fig. 4(b)]. The 3-D MGRF model is defined by El-Baz [36] as

P (m) ∝ exp
∑

(x,y ,z )∈R

∑

(ξ ,ζ ,κ)∈νs

V(mx,y ,z ,mx+ξ ,y+ζ ,z+κ) (4)

where V is the bivalue Gibbs potential that depends on the
equality of the nearest pair of labels

V =

{
V (λ, λ′) = Veq , if λ = λ′

V (λ, λ′) = Vne , if λ %= λ′
. (5)

Let fa,eq(m) denote the relative frequency of the equal label
pairs in the equivalent voxel pairs {((x, y, z), (x + ξ, y + ζ, z +
κ)) : (x, y, z), (x + ξ, y + ζ, z + κ) ∈ R; (ξ, ζ,κ) ∈ νs}. The
initial m results in approximate analytical maximum likelihood
potentials estimates [36]

Veq = −Vne ≈ 2feq(m) − 1 (6)

that allow for computing the voxelwise probabilities
px,y ,z (mx,y ,z = λ) of each label λ ∈ L. In Fig. 2, Step 3 shows
the classification process. Algorithm 1 summarizes the basic
steps of the proposed framework.

III. PERFORMANCE EVALUATION METRICS

The performance of the proposed framework was evalu-
ated using three performance metrics: 1) the Dice similarity
coefficient (DSC) [37], 2) the 95% modified Hausdorff dis-
tance (MHD) [38], and 3) the absolute brain volume difference
(ABVD). The following sections explain the three metrics in
more detail.
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TABLE I
COMPARATIVE ACCURACY OF OUR APPROACH VERSUS THE METHODS IN [4],[18], [24], AND [40] BY THE DSC, MHD, AND ABVD ON 30 INFANT DATASETS WITH

AVAILABLE GROUND TRUTH (“SD”—STANDARD DEVIATION)

Evaluation Metric

DSC (%) MHD (mm) ABVD (%)

Method Mean±SD p-value Mean ±SD p-value Mean ±SD p-value

OUR 96.77 ± 1.45 —— 4.14 ± 1.76 —— 4.95 ± 2.62 ——
iBEAT [24] 94.44 ± 2.14 0.0162 9.31 ± 8.96 0.04 7.27± 1.92 0.0007
BET2 [40] 89.98± 1.53 0.0001 11.03 ± 7.4 0.0033 11.57 ± 7.05 0.03
BET [4] 88.7 ± 2.7 0.0001 13.6± 5.6 0.0005 15.7± 6.5 0.0001
BSE [18] 88.42± 3.03 0.0001 18.4 ± 4.02 0.0005 19.07 ± 3.722 0.015

Fig. 13. Comparative infant brain extraction results for three independent subjects: (a) ground truth images and the brain extraction results obtained using
(b) our, (c) BET [4], (d) BET2 [40], and (e) BSE [18] approaches.

A. DSC

The DSC characterizes the agreement between the segmented
and ground truth objects (as seen in Fig. 5). The DSC measure
is given from [37] as

DSC =
2TP

2TP + FP + FN
(7)

where TP, FP, and FN denote the true positive, false positive, and
false negative, respectively. Higher DSC values indicate better
segmentation, which means that the results match the ground
truth better than results with lower DSC values. A DSC value

of 0 indicates no overlap, and a DSC value of 1 indicates ideal
segmentation (or agreement).

B. MHD

In order to measure the error distance between the segmented
and ground truth objects, we used the MHD. The Hausdorff
distance (HD) [38] from a set A1 to a set A2 is defined as the
maximum distance of the set A1 to the nearest point in the set
A2 (as shown in Fig. 6)

H(A1 , A1) = max
c∈A 1

{min
e∈A 2

{d(c, e)}} (8)
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Algorithm 1 Proposed Brain Extraction Approach
1) Perform preprocessing on the MR brain data:

a) Bias correction of the brain [31].
b) GGMRF edge preservation, Fig. 2, Step 1.

2) Perform initial skull stripping using BET [4], Fig. 2,
Step 2 (a).

3) Calculate the distance map inside the binary mask
obtained from BET using FMLS [33], then generate a
set of N isosurfaces from this map, Fig. 2, Step 2
(b),(c).

4) Estimate the LCDG models for brain and nonbrain
tissues and form an initial map m by voxelwise
classification, Fig. 2, Step 3.

5) Estimate analytically the Gibbs potentials for the
pairwise MGRF model of m to identify the MGRF
probability, Fig. 2, Step 3.

6) while j ≤ N
a) Select the jth isosurfacer and classify its voxels using

a Bayes classifier combining the first- and
second-order visual appearance features.

b) Are all the voxels on the selected isosurfaces
classified only as brain tissue?
• No −→ Go to Step 6 (a).
• Yes −→ Break

7) Apply connected component analysis to get rid of any
scattered nonbrain tissues, Fig. 2, Step 4.

where c and e denote points of set A1 and A2 , respectively, and
d(c, e) is the Euclidean distance between c and e.

The bidirectional HD between the segmented region SR and
its ground truth GT is defined as

HBi(GT, SR) = max{H(GT, SR),H(SR, GT)}. (9)

In this paper, we use the 95th-perecntile bidirectional HD as
a metric that measures the segmentation accuracy, which is also
known as the MHD.

C. ABVD

In addition to the DSC and the MHD, we have used the
ABVD as a third metric for measuring the segmentation accu-
racy. The ABVD is the percentage volume difference between
the segmentation and the ground truth as seen in Fig. 7.

IV. EXPERIMENTAL RESULTS

In order to assess the robustness and performance of the pro-
posed framework, we applied it to 300 T1-weighted MR in-
fant brain datasets which were obtained from the infant brain
imaging study [39]. An MR expert assessed the results qualita-
tively. In addition, the accuracy of the proposed approach was
quantitatively validated using 30 datasets with known manually
segmented ground truth that were obtained by an MR expert.
The MR data were acquired at 3 T and consists of T1- and T2-

weighted MR images of infants scanned at approximately 5–9
months old with voxel size of 1×1×1 mm3 .

A stepwise brain extraction using the proposed approach for
a selected axial cross section of one subject is demonstrated in
Fig. 8. The input MR image [see Fig. 8(a)] is first bias corrected
[see Fig. 8(b)] and applied to the 3-D GGMRF [30] edge preser-
vation [see Fig. 8(c)]. This is followed by an initial brain extrac-
tion using BET [4] [see Fig. 8(d)]. As mentioned in Section II,
a relatively small BET factor was chosen in order to minimize
the loss of brain tissues. The average value concluded from
the experiments on the subjects used is 0.38. The proposed
isosurfaces-based approach [see Fig. 8(e)] is then employed to
achieve the final skull stripping as shown in Fig. 8(f). It is clear
from the results in Fig. 8 that the proposed framework provides
more accurate infant brain extraction than BET. More stripping
results for different cross sections from different subjects are
shown in Fig. 9. Moreover, Fig. 10 shows the 3-D extraction
results of the proposed two infant subjects projected into the
axial, coronal, and sagittal views for visualization.

To highlight the advantage of the proposed framework, we
compared its performance to one of the state-of-the-art tools
for infant brain extraction, called the infant brain extraction
and analysis toolbox (iBEAT) [24]. The version used is iBEAT
1.1 which is a Linux-based software package, and is publicly
available at http://www.nitrc.org/projects/ibeat. The iBEAT per-
forms multiple complementary brain extractions using a metaal-
gorithm, as mentioned in Section I, yet, Figs. 11 (2-D images
results) and 12(a) and (e) (3-D volume results) show that the pro-
posed approach provides more accurate stripping results. Also,
Table I shows that our approach performs notably better, accord-
ing to the higher DSC and lower MHD values and ABVD values .

In addition to the comparison with iBEAT, we also compared
our approach to three widely used BETs for adult brain extrac-
tion: the BSE [18], the BET [4], and the BET2 [40]. This com-
parison was conducted to show that the existing approaches for
adult brain extraction would have low accuracy on infant brains.
The comparative accuracy of the proposed approach versus the
BSE, BET, and BET2 techniques on representative images for
three subjects is shown in Fig. 13. As demonstrated in Fig. 13
and the 3-D extracted brains shown in Fig. 12, our approach
extracted the brain tissue more accurately compared with the
other approaches. The lower performance of the BET [4] could
be caused by its sensitivity to image noise and inhomogeneity
because this method relies only on voxels’ intensity changes
and does not account for spatial voxel interactions. On the other
hand, the BET2 approach [40] slightly improves the brain ex-
traction accuracy compared with the BET one. However, unlike
the BET and our approach, the BET2 technique requires both
T1-and T2-weighted MR images. The BSE [18] succeeds in ac-
curately removing the skull but it removes parts from the brain
tissues as well, which may lead to inaccurate results for some
clinical application (e.g., cortical thickness underestimation).

Table I compares our approach with the BSE, BET, and
BET2 techniques based on the DSC, MHD, and ABVD met-
rics. All metrics were obtained by comparing brain extraction
results of the 30 datasets against the available ground truth
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Fig. 14. Comparative brain extraction results for two independent adult subjects using (b) our approach, (c) BET [4], (d) BET2 [40], and (e) BSE [18]. Ground
truth images are shown in (a). The BET factor used for BET and BET2 methods is the default value (0.5). Segmentation errors are highlighted in green. BET and
BET2 did not discard all nonbrain tissue, whereas BSE discarded nonbrain, yet some parts of brain tissue were discarded as well.

TABLE II
COMPARATIVE ACCURACY OF OUR APPROACH VERSUS THE METHODS IN [4], [18], AND [40] BY THE DSC, MHD, AND ABVD ON 18 ADULT DATASETS WITH

AVAILABLE GROUND TRUTH (“SD”—STANDARD DEVIATION)

Evaluation Metric

DSC (%) MHD (mm) ABVD (%)

Method Mean ±SD p-value Mean ± SD p-value Mean ± SD p-value

OUR 93.11± 2.4 —— 8.43± 1.88 —— 6.7 ± 1.13 ——
BET2 [40] 92.60 ± 2.86 0.0001 10.56± 6.19 0.0001 7.42± 7.67 0.2035
BET [4] 91.14± 2.62 0.0001 11.26± 5.83 0.0001 12.69 ± 6.51 0.0001
BSE [18] 89.92 ± 7.11 0.0026 15.12 ± 10.09 0.0001 18.84± 22.87 0.0001

segmentation. As demonstrated in Table I, the mean DSC,
MHD, and ABVD values for our framework are 96.77 ± 1.45%,
4.14 ± 1.76 mm, and 4.95 ± 2.62%, respectively, which con-
firm the high accuracy of our approach. Statistical significance
of the better performance of our approach with respect to other
methods is confirmed by the paired t-tests (p-values are less
than 0.05).

In order to show that our approach is not limited to infants
and that it could be generalized to adult brains, we applied it
on 18 adult subjects and compared its performance to that of
BSE, BET, and BET2. The scans are T1-weighted, with voxel
size of 0.958 mm × 0.958 mm × 3.0 mm. They have been
acquired at the UMC Utrecht (the Netherlands) of patients with
diabetes and matched controls with varying degrees of atro-
phy and WM lesions, and ages are 50 and higher. The com-
parative accuracy of the proposed approach versus BSE, BET,
and BET2 on representative images for two subjects are shown
in Fig. 14. As demonstrated, our approach [see Fig. 14(b)]
extracted the brain tissue more accurately compared with the
other approaches. Table II compares our approach on adults
with the BSE, BET, and BET2 based on the DSC, MHD, and
ABVD metrics. All metrics were obtained by comparing results
against the 18 datasets with available ground truth segmentation.
As demonstrated in Table II, the mean DSC, MHD, and ABVD

values for our framework are 93.11± 2.4%, 8.43 ± 1.88 mm,
and 6.7± 1.13%, respectively.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, this paper has introduced a novel framework
for automated extraction of the brain from 3-D infant MR im-
ages. Our experiments show that the fusion of stochastic and
geometric models of the brain MRI data leads to more accu-
rate brain extraction, when compared with widely used BETs:
iBEAT, BSE, BET, and BET2. The results were evaluated us-
ing the DSC, 95% MHD, and the ABVD metrics on 30 infant
MR brain datasets. The proposed approach also proved efficient
when applied on adult brains, and compared versus state-of-the-
art methods. A future extension of this paper would be integrat-
ing the proposed skull-stripping approach into a computer-aided
diagnostic system for early detection of autism, which is the ulti-
mate goal of our research group. Integrating higher-order cliques
of the joint MGRF model could be another extension to the pro-
posed framework, where, currently, only pairwise cliques are
exploited. Higher-order cliques (e.g., third- and fourth-order)
will better account for noise and large inhomogeneities of the
MRI scans of infants.
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