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Autism spectrum disorder is a neurodevelopmental disorder characterized by impaired
social abilities and communication difficulties. The golden standard for autism diagnosis in
research rely on behavioral features, for example, the autism diagnosis observation sched-
ule, the Autism Diagnostic Interview-Revised. In this study we introduce a computer-aided
diagnosis system that uses features from structural MRI (sMRI) and resting state functional
MRI (fMRI) to help predict an autism diagnosis by clinicians. The proposed system is capa-
ble of parcellating brain regions to show which areas are most likely affected by autism
related abnormalities and thus help in targeting potential therapeutic interventions. When
tested on 18 data sets (n = 1060) from the ABIDE consortium, our system was able to
achieve high accuracy (sMRI 0.75-1.00; fMRI 0.79-1.00), sensitivity (sMRI 0.73-1.00; fMRI
0.78-1.00), and specificity (sMRI 0.78-1.00; fMRI 0.79-1.00). The proposed system could be
considered an important step toward helping physicians interpret results of neuroimaging
studies and personalize treatment options. To the best of our knowledge, this work is the
first to combine features from structural and functional MRI, use them for personalized diag-
nosis and achieve high accuracies on a relatively large population.
Semin Pediatr Neurol 34:100805 © 2020 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by social and behavioral impair-

ments.1 Previous work has reported a correlation between the

severity of autism and both functional activation and anatomical
abnormalities.2 Structural MRI (sMRI) is the most commonly
used imaging modality for screening anatomical anomalies in
both research and clinical practice.3 By way of contrast, changes
in blood flow, putatively related to neuronal activation, is
assessed using functional MRI (fMRI).4

When studying structural MRIs, 2 main elements lend them-
selves to analysis (1) shape and (2) volumetric features. Struc-
tural MRI study uses features derived from one or both. A study
conducted on 60 autistic and 52 typically developed (TD) sub-
jects analyzed anatomical anomalies in cerebral and cerebellar
volumes of autistic brains.5 In this study, 50% of autistic partici-
pants were in the age of 5 years or older (group 1) and the rest
were in the age range of 2-4 years (group 2). Ninety percent of
the participants within group 2 showed brain volumes larger
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than normal. The result was supported by a subsequent study,5

using the same patient population, that found an increase in the
cerebellar white matter volume in autistic subjects (group 2) as
compared to controls. Other studies have emphasized that the
cerebral hemispheres can remain enlarged during adulthood.6 It
was suggested that the main areas of brain enlargement appear
to be the frontal, temporal, and parietal lobes.7-9

More insightful results were achieved when considering
changes in cortical volume (CV) to be the result of the prod-
uct of 2 independent parameters: cortical thickness (CT) and
surface area (SA).10 The study analyzed 3 parameters (corti-
cal volume, CT, and SA) and found a significant increase in
the CT of ASD subjects as compared to TD individuals in the
frontal lobe regions. By contrast, the SA in the orbitofrontal
cortex and posterior cingulum in the autistic subjects was
reduced as compared to the control group. Further study
based on those 3 parameters reported similar results.11 The
study of longitudinal changes in cortical thickness allows
the identification of specific regional differences in the CT.
One such study, discovered that the most significant differ-
ences in CT between ASD and TD individuals of the same
mean age were in the bilateral inferior frontal gyrus, pars
opercularis, pars triangularis, right caudal middle frontal,
and left rostral middle frontal regions.12 However, significant
differences in other brain regions have also been reported.
For instance, autistic subjects have displayed a larger amyg-
dala than TD subjects.13 During examining the areas that are
believed to be responsible for the social cognitive functions
in particular, (1) facial recognition (right fusiform gyrus), (2)
perception and eye gaze (superior temporal gyrus), and (3)
mental state attribution (anterior cingulate and superior tem-
poral sulcus), a significant increase in the gray matter volume
was observed in these brain regions.14 Another study exam-
ining the cerebellum, fusiform gyrus, and frontal cortex15

found increased gray matter volume in the cerebellum.
One of the main technological advancements introduced

to differentiate between the neurotypical and autistic brains
is shape-based analysis. One widely studied morphometric
parameter has been the gyrification index (GI), which has
been used as a quantitative measure of cortical folding for
shape analysis.16,17 Calculated from MRI slices, GI is the ratio
between total contour length and outer contour length of a
gyrus. It was reported that the GI in the left frontal area is
larger in ASD adolescents and children compared to TD
peers.17 It has also been noted that the GI decreases with age
in ASD individuals while it does not in TD subjects. An addi-
tional supporting result for increased GI in ASD individuals
was a reported increased gyrification in the bilateral posterior
cortices.18 In addition, it has been noted that typically devel-
oping individuals showed a positive correlation between gyr-
ification and vocabulary knowledge in the left inferior
parietal cortex while no similar correlation was found in
autistic individuals. An additional example of folding analysis
introduced 6 folding measures used to discriminate between
ASD and TD groups.19 These 6 folding measures were (1)
Shape index, (2) Curvedness, (3) Isoperimetric ratio, (4)
Convexity ratio, (5) Intrinsic curvature index, and (6) Mean
curvature norm. Increased folding was noted in the temporal,

frontal, and parietal lobes of ASD individuals as compared to
TD controls. This increased folding was more prominent in
children than adults. A more recent study extracted 7 fea-
tures from a reconstructed brain mesh to address the curva-
ture abnormalities.20 The examined features included (1)
mean curvature, (2) thickness, (3) Gaussian curvature, fold-
ing index, (5) standard deviation, (6) volume, and (7) SA.
The study noted that diagnostic accuracy could be increased
when clinical features were added to their classification algo-
rithm. Another study used surface-based morphometry to
examine the cortical shape abnormalities in low- and high-
functioning ASD individuals.21 To analyze such abnormali-
ties, sulcal depth was used as a quantitative measure. In both
low-functioning and high-functioning ASD individuals, simi-
lar abnormalities in sulcal depth were observed mainly in the
frontal operculum and anterior insula, with slightly smaller
size noted in high-functioning ASD subjects. Also, the infe-
rior frontal gyrus had shape abnormalities that were centered
near the ventral postcentral gyrus and parietal operculum.
Sulcal depth differences were also reported for the anterior-
insula and temporoparietal junction in both ASD and TD
groups.22 Temporal and frontal areas exhibited the most sig-
nificant abnormalities, specifically for the social and language
regions in autistic groups, which were severely affected. An
investigation of brain shape differences using the GI index
reported a prominent increase in gyrification around the
postcentral and left pre-gyrus in ASD individuals.23

To study the brain functional activation anomalies, analysis of
the fMRI modality is performed by applying 2 major types of
experiments, (1) resting state fMRI (RfMRI) and (2) task-based
fMRI.24 The underconnectivity theory was first introduced as a
way of explaining both the neurobiological and cognitive abnor-
malities observed in ASD.25 Reduced synchronized brain activ-
ity is a main hallmark for cognitive disorders.

Task-based approaches are studied to identify brain areas acti-
vated in response to certain tasks. An example of such tasks was
a visual figures experiment,26 which identified lower activation
in the inferior parietal and the left dorsolateral prefrontal areas,
and higher activation bilaterally in the superior parietal and the
right occipital (visuospatial) areas of ASD subjects. Another
example is the response to facial expressions,27 where higher
activation in the ventral prefrontal cortex, striatum, and amyg-
dala was reported for autistic subjects.

Another paradigm studied is the rewards task, in which
the brain activity is monitored in response to rewards, for
example, social reward or monetary rewards.28,29 ASD indi-
viduals were reported to have more activation in the anterior
cingulate gyrus and left mid-frontal gyrus and less activation
in the right nucleus accumbens during the response to social
and monetary rewards.30

Studies of resting state fMRI investigate alterations in brain
connectivity between TD and ASD groups.31 In a recent
study, a machine learning algorithm based on a multivariate
autoregressive model was used to study functional connectiv-
ity.32 The study found that ASD subjects had reduced func-
tional connectivity; results which also lend credence to the
theory of underconnectivity in autism. Similarly, reduced
functional connectivity in the superior parietal and
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visuospatial areas was reported in ASD as compared to TD.33

Another study showed reduced connectivity in both the tem-
poral and frontal cortex, while no global abnormalities were
detected.34 Abnormalities in the functional networks were
reported as being more evident in social information process-
ing related networks.35

ASD have not only shown results that indicate brain
underconnectivity, as in the previous studies, but also
increased connectivity for some areas compared to healthy
control subjects.36 The research studied alternations of func-
tional connectivity patterns, specifically the interhemispheric
connectivity analysis, and showed both decreased and
increased connectivity in ASD subjects. Another supporting
study reported hyperconnectivity in autistic children with
more severe social dysfunction.37 The presence of altered
connectivity was also confirmed.38 Both hypoconnectivity
and hyperconnectivity were present in ASD subjects.
In addition to reporting global differences between ASD

and TD groups, resting state connectivity patterns demon-
strated promising results in diagnosing many diseases for
example, Alzheimer’s disease and schizophrenia.39,40 A
recent study used functional connectivity analysis with the
deep neural network to diagnose autism.41 It fed the classifi-
cation network input with the functional connectivity corre-
lation matrix. This experiment achieved an accuracy of 70%.
The marked clinical heterogeneity noted in autism suggests

the importance of considering both the anatomical and physio-
logical characteristics of individual subjects when entertaining a
possible diagnosis. We believe that combining both sMRI and
fMRI will bear results that correlate more closely with the autistic
behavior, thus improving diagnostic sensitivity, accuracy, and
specificity. In the proposed system, functional and anatomical
features are used by a machine-learning algorithm to help clini-
cians establish a personalized autism diagnosis.

Material andMethods
In this study, the data for both structural and functional MRI
was obtained from ABIDE I dataset (http://fcon_1000.proj
ects.nitrc.org/indi/abide/abide_I.html). The ABIDE I was

collected from 18 different sites with total number of subjects
n ¼ 1060 (561 autistic and 521 TD). The demographics of
the subjects are provided in their respective tables. Demo-
graphic data includes the age, gender, full scale IQ, perfor-
mance IQ, verbal IQ and hand dominance for each group.
The scanning parameters of both structural and functional
MRI are given. These parameters include scanner type, scan-
ning protocol, repetition time, echo time, flipping angle, and
experiment duration for fMRI. All of the information is pub-
licly available in the ABDIE dataset website. Figure 1 illus-
trates the whole pipeline of the proposed methodology in
this study.

Structural MRI Experiment
The sMRI study was divided into 2 main parts (1) data pre-
processing, brain segmentation, and cortex reconstruction
and (2) extraction of both volumetric and morphological fea-
tures. The preprocessing steps could be summarized as fol-
lows:

Preprocessing, Brain Segmentation and Cortex
Reconstruction

1. Intensity normalization42: In this step, a nonparametric
model is used to correct intensity nonuniformities.
This model does not require any prior information
about tissues classification in the image. This step is
important in order to overcome the variability of scan-
ners effect.

2. Skull stripping43: In this step, brain extraction tool
algorithm is used. This algorithm combines both
watershed algorithm and deformable surface model.43

Brain Segmentation and Area Labeling
In this step, a combined model, that uses both shape and
intensity models, is used to segment brain tissues into gray
matter, white matter and Cerebrospinal fluid (CSF).44,45

Figure 1 The overall pipeline of the proposed approach, for each modality preprocessing and analysis is applied to cal-
culate the feature matrix. The features of the modality are fed to a local classifier, modality fusion decision is then calcu-
lated and finally overall diagnosis decision is reported using both sMRI and fMRI decisions. (Color version of figure is
available online.)
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Having the preprocessing and segmentation completed, a
second set of steps is applied for cortex reconstruction and
anatomical atlas parcellation to an anatomical template.

1. Defining the gray-white matter boundary46,47: In this
step, the gray-white matter surface is accurately
detected by correcting the topological defects by itera-
tive opening and sealing algorithm.

2. Surface inflation and spherical atlas registration48,49: In
this step, a 3D sphere is constructed and the cortical
surface is inflated on this sphere. The surface is then
parameterized to fit on the sphere to create a spherical
based coordinate system.

3. Cortical surface parcellation to the Desikan-Killiany
atlas50: In this step, the brain is parcellated to 68 areas
(34 areas per hemisphere)

After completing the above steps, 8 features are calculated
for each of the 34 hemisphere areas. The 8 calculated features
for each Desikan-Killiany atlas area are displayed in Table 1.
In this study, the FreeSurfer pipeline was used for all of the

preprocessing and feature extraction steps mentioned above.
FreeSurfer is a widely used tool for MRI analysis and it is freely
available for download (http://surfer.nmr.mgh.harvard.edu/).
Since the data are collected from multiple sites and with

different criteria, possible variability may be accounted by
some confounding variables. For example, age mismatch or

IQ differences may affect the calculated features values. To
address such problem, a per-subject normalization algorithm
was utilized. This algorithm uses the differences between
couple of areas (Delta matrix) instead of using the value from
each area. In this way, the individual abnormalities are better
addressed. By building this delta matrix the feature value per
area is compared to the other values within the subject, then
this difference is used for intrasubject variability. For each
feature, a 68 £ 68 matrix is constructed. This leads to fea-
ture matrix of size 68£ 68£ 8 per subject. The pipeline of
sMRI experiment is shown in Figure 2.

fMRI Experiment
In order to examine the functional connectivity between different
brain areas, the correlation between the activation courses is then
used as a measure of functional connectivity. The data used in
this experiment are the preprocessed data provided by the
ABIDE dataset. The selected preprocessing pipeline is the Con-
nectome Computation System pipeline, where the first 4 vol-
umes are dropped; slice timing correction, motion correction,
and intensity normalization are performed. To overcome the sub-
ject’s motion-related confounding variables, 24 motion parame-
ters are used as regressors. To remove their effect, the mean
white matter and CSF are also regressed out. Finally, the fMRI
volumes are registered to MNI-152 standard space. The registra-
tion consists of 2 stages. First, each fMRI volume is registered to
the corresponding structural T1-weighted volume, and then the
structural volume is registered to the standard space image.

In order to study the coherence between different brain
areas, the functional connectivity was selected to be the fea-
ture of interest in this study. The reason behind this selection
is its ability to identify the intrinsic functional network in the
brain. As mentioned in the introduction, the alternation in
connectivity within and between the networks has been
reported to be of use for diagnosing autism.51

Since we are using in this study the AAL cortical parcella-
tion, the functional connectivity matrix is constructed
between each pair of its 116 areas. The Pearson correlation
coefficient (r) is used to calculate the functional connectivity
between each pair of areas in the atlas. Figure 3 shows how
to construct the connectivity feature matrix.

Table 1 The Eight Extracted Features and Their Description for
the sMRI Experiment

Feature Description

SA Surface area per DK atlas area
V Volume per DK atlas area
T Average thickness per DK atlas area
Tstd Standard deviation of thickness in DK atlas area
MCI Mean of the 2 principal curvature per DK atlas area
K Mean of Gaussian curvature per DK atlas area
ICI Mean of intrinsic curvature per DK atlas area
FI Average of folding index index per DK atlas area

Figure 2 Eight features are extracted from the parcellated volume, summary statistics are calculated for each feature at
each DK atlas area. Then, Delta matrix for each subject is calculated by subtracting the feature values between each cou-
ple of areas. The output feature matrix is 68£ 68£ 8. (Color version of figure is available online.)
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Local and Global Analysis
In this study, the same classification pipeline is applied to
both sMRI and fMRI. As mentioned above, the fMRI features
are a 116£ 116 connectivity matrix, F per subject.

F ¼

r1;1 r1;2 ⋯

..

.
⋱

rn;1 r116;116

2

664

3

775 ð1Þ

Where ri, j is the correlation coefficient between the activa-
tion time courses in ith and jth areas and n is the index of areas
(n ¼ 116). The constructed feature matrix for sMRI features
S is a 68 £ 68 £ 8 matrix per subject, where each element
is the difference between the feature value at ith and jth areas.

Sf ¼

D1;1;f D1;2;f ⋯

..

.
⋱

D68;1;f D68;68;f

2

64

3

75 ð2Þ

Where Sf is the feature matrix of the feature f and Si, j, f is the
difference in the values of feature f between areas i and j.

For each of the elements in both feature matrices, this ele-
ment is fed to a local classifier first. Both the accuracy and
the output probability of each feature belonging to an autism
class are calculated from the local classifiers. The selected
local classifiers in this study is K-nearest neighbors classifiers
with number of k = 7. After finishing the local classification
phase, the features for each modality are sorted with respect
to the local classification accuracy achieved in the local classi-
fication step.

After completing the local analysis, the second step is
to use the sorted list of feature vectors of both sMRI and
fMRI for the per-modality analysis. In this step, an incre-
mental approach is used, where a single feature from the
sorted list is added at time to the used feature vector.
After adding each feature, we run our cross validation for
the whole system and the accuracy is recorded. In this
step, a random forest classifier is used. To adjust the
hyperparameters of the random forest (number of estima-
tors and maximum depth of the tree) a grid search is
used. The optimal cutoff is obtained by trying the top
100 features in the sorted feature list until reaching the
maximum cross validation accuracy.

Figure 3 For each couple of areas the correlation coefficient between the time courses is calculated to form 1 68£ 86
feature matrix. (Color version of figure is available online.)

Figure 4 The 2 stages classification approach used. In the first stage, a local classification per each feature in sMRI and
fMRI feature matrices is used. The output accuracies of the first stage are used to create a sorted feature vectors. An
incremental approach is used to determine the optimal length of the sMRI and fMRI feature vectors. These 2 vectors
are finally concatenated for the global classification. (Color version of figure is available online.)

A comprehensive framework for differentiating autism 5



A Comprehensive Framework for Differentiating Autism Spectrum Disorder www.neurospectruminsights.com

After finding the optimal cutoff threshold per modality,
both sMRI and fMRI feature vectors are concatenated
together and fed to another random forest classifier for the
global analysis decision. The 2 steps classification approach
used is illustrated in Figure 4.

Results
Subjects Demographics and Cohort
Summary Statistics
Table 2 shows the demographic summary statistics for each
site for both the autistic and typically developing subjects.
For each site, the number of males and females, age, verbal
IQ, full IQ, and performance IQ statistics are included. The
listed statistics are the minimum, maximum, mean, and stan-
dard deviation for both autistic and neurotypical subjects.
Per-site distribution of people on the spectrum was signifi-
cantly different across sites (x2 ¼ 251; 14 df; p< 10"6). Six
sites provided research-reliable ADOS calibrated severity
scores. There was a trend toward significant differences in
mean severity among these 6 sites (F ¼ 2:24; df ¼ 5:224;
p ¼ 0:052). Four sites administered the Social Responsive-
ness Scale. Among these sites, differences between the autism
and control groups varied (F ¼ 2:95; df ¼ 3; 357;
p ¼ 0:0327). Two sites (LEUVEN and SBL) administered
the Social Communication Questionnaire, and 2 (LEUVEN
and SBL) administered the Autism-Spectrum Quotient. Dif-
ferences between ASD and control groups were consistent
between sites (interaction effect P = 0.550 and 0.996, respec-
tively). Differences in full-scale IQ and verbal IQ between
ASD and control varied significantly per site (F ¼ 2:18; df ¼
15; 1007; p ¼ 0:0058 and F ¼ 2:55; df ¼ 11; 892; p
¼ 0:0035, respectively). Differences in performance IQ did

not, however (P = 0.34).

Local and Global Diagnosis
For each element in both structural and functional MRI fea-
ture matrices, the probability of this element belonging to
the autism class is calculated. The output local probabilities
form 2 matrices PS and PFwith the same size as the feature
matrices F and S.

PF ¼

pf1;1pf1; 2⋯

..

.
⋱

pf pf116; 116

2

64

3

75 ð3Þ

PSf ¼

Ps1;1;fPs1;2;f⋯

..

.
⋱

Ps68;1;f Ps68;68;f

2

64

3

75 ð4Þ

Where pfij and Psi, j, f represent the probability of an element
in the feature matrix of functional and structural feature
matrices respectively to belong to the autism class.

Table 2 The Cohort Summary Statistics of Each Site in the
Used Dataset

UCLA
ASD

Males 48 Females 6
min. max. mean s.d.

Age 8.36 17.94 13.0 2.4
VIQ 67.0 132.0 101. 6 14.0
FSIQ 67.0 128.0 98.2 18.7
PIQ 73.0 132.0 99.8 13.7

TD
Males 38 Females 6

min. max. mean s.d.
Age 9.21 17.79 13.0 1.9
VIQ 86.0 127.0 107.1 11.4
FSIQ 86.0 128.0 106.4 11.0
PIQ 76.0 129.0 104.3 11.6

NYU
ASD

Males 65 Females 10
min. max. mean s.d.

Age 7.13 39.1 14.7 7.0
VIQ 73.0 139.0 104.9 15.8
FSIQ 73.0 148.0 107.1 16.2
PIQ 72.0 149.0 108.3 17.1

TD
Males 74 Females 26

min. max. mean s.d.
Age 6.47 31.78 15.7 6.1
VIQ 80.0 143.0 112.8 12.6
FSIQ 80.0 142.0 113.0 13.3
PIQ 67.0 137.0 110.2 13.9

Leuven
ASD

Males 26 Females 3
min. max. mean s.d.

Age 12.1 32.0 17.8 4.9
VIQ 50.0 128.0 99.1 19.7
FSIQ 50.0 128.0 100.2 31.6
PIQ 74.0 149.0 103.7 16.5

TD
Males 29 Females 5

min. max. mean s.d.
Age 12.2 29.0 18.2 5.0
VIQ 86.0 136.0 116.4 10.7
FSIQ 86.0 146.0 107.6 30.3
PIQ 84.0 155.0 108.0 12.9

Caltech
ASD

Males 15 Females 4
min. max. mean s.d.

Age 17.5 55.4 27.4 10.0
VIQ 80.0 135.0 107.7 15.0
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Table 2 (Continued )

Caltech
ASD

FSIQ 80.0 133.0 108.2 12.2
PIQ 84.0 128.0 107.4 11.4

TD
Males 14 Females 4

min. max. mean s.d.
Age 17.0 56.2 28.0 10.6
VIQ 85.0 135.0 114.5 12.4
FSIQ 85.0 134.0 114.8 9.3
PIQ 96.0 129.0 111.8 9.2

MAXMUN
ASD

Males 21 Females 3
min. max. mean s.d.

Age 7.0 58.0 26.1 14.6
VIQ 0 0 0.0 0.0
FSIQ 0 133.0 109.9 14.2
PIQ 99.0 122.0 111.5 9.4

TD
Males 27 Females 1

min. max. mean s.d.
Age 7.0 46.0 24.6 8.6
VIQ 0 0 0.0 0.0
FSIQ 0 129.0 111.8 9.1
PIQ 83.0 126.0 110.9 13.4

OLIN
ASD

Males 16 Females 3
min. max. mean s.d.

Age 11.0 24.0 16.5 3.3
VIQ 0 0 0.0 0.0
FSIQ 0 135.0 112.6 17.8
PIQ 0 0 0.0 0.0

TD
Males 13 Females 2

min. max. mean s.d.
Age 10.0 23.0 16.7 3.5
VIQ 0 0 0.0 0.0
FSIQ 0 135.0 113.9 16.0
PIQ 0 0 0.0 0.0

KKI
ASD

Males 16 Females 4
min. max. mean s.d.

Age 8.09 12.54 10.0 1.4
VIQ 0 0 0.0 0.0
FSIQ 0 131.0 93.45 27.3
PIQ 0 0 0.0 0.0

TD
Males 20 Females 8

min. max. mean s.d.

Table 2 (Continued )

KKI
ASD

Age 8.07 12.77 10.0 1.1
VIQ 0 0 0.0 0.0
FSIQ 0 125.0 112.1 9.2
PIQ 0 0 0.0 0.0

OHSU
ASD

Males 12 Females 0
min. max. mean s.d.

Age 8.0 15.23 11.4 2.1
VIQ 0 0 0.0 0.0
FSIQ 0 132.0 106.0 21.0
PIQ 0 0 0.0 0.0

TD
Males 14 Females 0

min. max. mean s.d.
Age 8.2 11.99 10.1 1.1
VIQ 0 0 0.0 0.0
FSIQ 0 132.0 115.0 10.7
PIQ 0 0 0.0 0.0

Pitt
ASD

Males 25 Females 4
min. max. mean s.d.

Age 9.33 35.2 19.0 7.2
VIQ 81.0 132.0 107.0 13.5
FSIQ 81.0 131.0 110.2 14.3
PIQ 83.0 128.0 110.8 13.9

TD
Males 23 Females 4

min. max. mean s.d.
Age 9.44 33.24 18.9 6.5
VIQ 88.0 132.0 107.7 10.8
FSIQ 88.0 130.0 110.1 9.2
PIQ 90.0 123.0 109.6 8.8

SBL
ASD

Males 15 Females 0
min. max. mean s.d.

Age 22.0 64.0 35.0 10.1
VIQ 93.0 133.0 110.4 11.9
FSIQ 93.0 125.0 109.2 12.2
PIQ 84.0 135.0 114.2 11.6

TD
Males 15 Females 0

min. max. mean s.d.
Age 20.0 42.0 33.7 6.4
VIQ 0 0 0.0 0.0
FSIQ 0 0 0.0 0.0
PIQ 0 0 0.0 0.0
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To obtain the personalized maps, 2 vectors, Vf and Vs are
calculated for fMRI and sMRI, respectively.

Vf ið Þ ¼ max
0!j!116

PF i; jð Þ ð5Þ

Vs ið Þ ¼ max
1!j!68;1!f!8

PS i; j; fð Þ ð6Þ
These 2 vector entries holds the highest calculated proba-

bility of a feature to be belonging to the autism class. A sam-
ple of these color-coded maps is shown in Figure 5.

SDSU
ASD

Males 13 Females 1
min. max. mean s.d.

Age 12.13 17.15 14.7 1.7
VIQ 83.0 147.0 110.1 17.7
FSIQ 83.0 141.0 103.3 33.5
PIQ 81.0 140.0 109.7 15.8

TD
Males 16 Females 6

min. max. mean s.d.
Age 8.67 16.88 14.2 1.9
VIQ 87.0 126.0 106.7 10.2
FSIQ 87.0 126.0 108.1 10.3
PIQ 86.0 129.0 107.8 11.9

Stanford
ASD

Males 15 Females 4
min. max. mean s.d.

Age 7.5 12.9 10.0 1.6
VIQ 72.0 149.0 108.3 19.9
FSIQ 72.0 141.0 110.7 15.7
PIQ 89.0 129.0 110.6 12.1

TD
Males 16 Females 4

min. max. mean s.d.
Age 7.8 12.4 10.0 1.6
VIQ 67.0 144.0 111.2 19.2
FSIQ 67.0 136.0 112.1 15.0
PIQ 81.0 145.0 110.6 15.2

Trinty
ASD

Males 22 Females 0
min. max. mean s.d.

Age 12.0 23.08 16.8 3.1
VIQ 85.0 135.0 107.9 14.0
FSIQ 85.0 135.0 105.3 29.2
PIQ 63.0 131.0 107.6 15.3

TD
Males 25 Females 0

min. max. mean s.d.
Age 12.04 25.66 17.1 3.7
VIQ 81.0 137.0 109.6 13.4
FSIQ 81.0 133.0 110.9 12.0
PIQ 84.0 132.0 110.3 10.7

UM
ASD

Males 57 Females 9
min. max. mean s.d.

Age 8.5 18.6 13.2 2.4
VIQ 75.0 180.0 108.7 19.9
FSIQ 75.0 147.5 105.5 17.1

Table 2 (Continued )

UM
ASD

PIQ 59.0 148.0 102.6 19.9
TD

Males 56 Females 18
min. max. mean s.d.

Age 8.2 28.8 14.8 3.6
VIQ 86.0 147.0 113.6 12.7
FSIQ 86.0 129.0 108.2 9.7
PIQ 72.0 127.0 103.1 12.1

USM
ASD

Males 46 Females 0
min. max. mean s.d.

Age 11.4 50.2 23.5 8.2
VIQ 55.0 130.0 95.0 19.1
FSIQ 55.0 132.0 97.4 21.9
PIQ 72.0 133.0 104.7 16.5

TD
Males 25 Females 0

min. max. mean s.d.
Age 8.8 39.4 21.3 8.2
VIQ 87.0 140.0 113.6 15.7
FSIQ 87.0 144.0 115.4 14.8
PIQ 90.0 138.0 112.8 13.9

Yale
ASD

Males 20 Females 8
min. max. mean s.d.

Age 7.0 17.75 12.7 3.0
VIQ 42.0 143.0 96.5 22.7
FSIQ 42.0 141.0 94.6 21.2
PIQ 37.0 126.0 92.3 18.9

TD
Males 20 Females 8

min. max. mean s.d.
Age 7.66 17.83 12.7 2.7
VIQ 73.0 140.0 106.8 15.7
FSIQ 73.0 140.0 105.0 17.1
PIQ 76.0 139.0 101.3 16.2
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Per Modality Diagnosis Results
After calculating the local probabilities from the first step, PS
and PF, they are then sorted according to their local accuracy.
A linear search is then performed to get the optimal length of
the concatenated feature vector for sMRI and fMRI. Tables 3
and 4 shows the accuracy, sensitivity, and specificity
obtained from each site and the optimal length of the feature
vector for this site.
The best results for sMRI were obtained with data

derived from the “CMU,” “OHSU,” and “SBL” sites, where
all subjects were correctly diagnosed. The lowest accuracy
was derived from the “NYU” site. For the fMRI, the
“OLIN” site achieved the best results, with all subjects
correctly classified. The lowest accuracy was again derived
from the “NYU” site. In order to achieve the highest accu-
racy, the maximum number of concatenated features was
75 for sMRI and 99 for fMRI.

Discussion
Autism is a disorder whose diagnosis is based on behavioral
findings. Ever since its inception as a clinical entity, its recog-
nition was contingent on the clinical skills of the interviewer
and the subjective interpretation of his/her findings. This
perspective was a throwback to the influence exerted by
Adolf Meyer on his prot!eg!e Leo Kanner.52 Meyer’s concep-
tion of psychobiology depended on collecting detailed case
histories that considered the social, environmental, and med-
ical factors that facilitated abnormal behaviors. Following the
psychobiological precepts, Kanner reported copious clinical
histories on 11 young children (8 boys and 3 girls, all

younger than 11 years) initially diagnosed with childhood
schizophrenia but who also exhibited an autistic with-
drawal.53 Kanner went on to describe precedents for similar
children within the medical literature. Based primarily on his
clinical acumen, and further patient documentation, he advo-
cated for autism as a sui generis developmental disorder. The
mode of diagnosis thus pursued by Kanner and his followers
necessitated the instantiation of behaviors that sometimes
were age dependent. This incurred in a delay for both obtain-
ing a diagnosing and therapeutic implementation until such
behaviors were abundantly clear. Furthermore, without any
pathognomonic symptoms, behaviors lent themselves to
multiple interpretations creating a diagnostic spectrum that
included atypical presentations. The inherent lack of clinical
homogeneity in any given subject sample has clouded
research efforts for most of the recorded history of autism.
The last decade has brought advancements in both anatomi-
cal and physiological assessment techniques, which allow us
to combine insights from clinical observations with labora-
tory test results.

In this study, an algorithm combining evidence from both
structural and functional MRI revealed an accuracy, sensitiv-
ity, and specificity in differentiating autism from neurotypi-
cals that ranged from 0.7 to 1. One weakness of the study is
that no other neurodevelopmental condition was tested. It is
thus possible that the specificity of the algorithm would
diminish when adding other groups that are on the differen-
tial diagnosis of autism, for example, attention-deficit/hyper-
activity disorder, spatial ataxia, and speech delay. Although
not diagnostic, the results suggest the improved predictabil-
ity of an autism diagnosis while still pending behavioral man-
ifestations of the disorder. This may be of special use in

Figure 5 A sample of the generated personalized maps for 8 subjects: (a, b) are the personalized maps of 2 ASD subjects
obtained from sMRI local classification, (c, d) are the personalized maps of 2 ASD subjects obtained from fMRI local
classification, (e, f) are the personalized maps of 2 TD subjects obtained from sMRI local classification, and (g, h) are
the personalized maps of 2 TD subjects obtained from fMRI local classification. (Color version of figure is available
online.)
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evaluating at risk children, for example, infants with an older
diagnosed sibling, cases of extreme prematurity, intrauterine
viral infections. It is generally accepted that early detection
and therapeutic intervention in these cases may lead to better
outcomes.54 Previous studies in the literature20 suggest that
adding elements of the clinical history to our algorithm may
improve the accuracy of the results; a line of inquiry that we
are presently pursuing. Furthermore, the ability of the algo-
rithm to provide regionalized assessments according to brain
parcellation gives the added advantage of guiding potential

therapeutic interventions by targeting affected sites. A patient
whose primary abnormalities arise from the prefrontal lobes
may gain from therapies, reward systems, and classroom
accommodations built to strengthen executive skills. Alterna-
tively, a patient whose primary abnormalities arise from the
language regions of the brain may similarly gain from speech
therapy. This interesting line of inquiry, as to differing poten-
tial interventions based on gross anatomical findings, to our
knowledge, has not been previously pursued in the autism
literature.

Table 3 The Obtained Accuracy, Sensitivity, Specificity and Area Under ROC Curve of the sMRI Experiment and the
Corresponding Number of the Concatenated Feature

Site
sMRI RESULTS

Number of Features

Accuracy Sensitivity Specificity AUC

UCLA 0.898 0.972 0.855 0.950 72
NYU 0.749 0.733 0.782 0.787 53
Leuven 0.921 0.914 0.929 0.935 14
CMU 1 1 1 1 13
Caltech 0.946 0.900 1 0.980 59
MaxMun 0.962 0.964 0.958 0.969 23
Olin 0.912 0.875 0.944 0.958 13
KKI 0.9167 0.900 0.944 0.938 30
OHSU 1 1 1 1 5
Pitt 0.946 0.962 0.933 0.963 35
SBL 1 1 1 1 10
SDSU 0.917 0.913 0.923 0.932 25
Stanford 0.897 0.944 0.857 0.942 23
Trinity 0.915 0.920 0.909 0.943 76
UM 0.814 0.800 0.833 0.843 27
USM 0.901 0.950 0.882 0.922 21
Yale 0.946 0.931 0.963 0.987 75

Table 4 The Obtained Accuracy, Sensitivity, Specificity and Area Under ROC Curve of the fMRI Experiment and the
Corresponding Number of the Concatenated Feature

Source
fMRI RESULTS

Number of Features

Accuracy Sensitivity Specificity AUC

UCLA 0.836 0.804 0.865 0.855 99
NYU 0.794 0.796 0.790 0.817 96
Leuven 0.952 0.942 0.964 0.993 81
CMU 0.925 0.923 0.928 0.972 19
Caltech 0.972 0.947 1 0.985 83
MaxMun 0.865 0.8 1 0.904 17
Olin 1 1 1 1 20
KKI 0.958 0.933 1 0.978 45
OHSU 0.946 0.813 0.900 0.863 16
Pitt 0.892 0.920 0.870 0.919 94
SBL 0.966 0.937 1 0.991 43
SDSU 0.916 0.880 1 0.89 22
Stanford 0.974 1 0.950 1 50
Trinity 0.978 1 0.956 0.994 76
UM 0.785 0.775 0.800 0.860 88
USM 0.887 0.947 0.865 0.916 43
Yale 0.964 0.964 0.964 0.965 65
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This study extends our previous fMRI work,29,55,56 to sug-
gest that some anatomical MRI parameters related to brain
anatomy and morphology including curvature, SA, and vol-
ume are relevant to defining ASD related circuitry abnormali-
ties.57 In essence, the aforementioned parameters stand as
anthropometric indices of brain connectivity.58 Neocorticali-
zation in primates has progressed through the expansion of
axonal mass, rather than an increase in the total number of
cortical neurons.59 Changes in the size and shape of the cere-
bral cortex have concurrently given rise to the altered
arrangement of white matter fibers, and alterations in the
gray/white matter.58

It is generally accepted that the results of a study
depend on the quality of the data collected. Data from our
study was obtained from an international depository cre-
ated by numerous brain imaging laboratories. Each con-
tributing partner made the decision as to how best collect
data based on their ongoing research interests. Inclusion-
ary and exclusionary criteria for participation varied
across imaging sites. Differences in diagnostic criteria, age
of participants, comorbidities, and concomitant use of
medical and alternative treatments could account for
added variability and shifting of the statistical distribution
away from mean values. Indeed, although all of the cen-
ters reporting data in the present study used DSM-IV-TR
(De Bildt) diagnostic criteria, the subject population fell
along different points of the clinical spectrum. A per site
distribution of autistic subjects (autism vs Asperger vs
PDD-NOS) in our study showed significant differences
(x2 = 251, 14 d.f., P < 10!6). We approached this prob-
lem by implementing a per subject normalization algo-
rithm that used the difference between areas (Delta
matrix) as opposed to singular regional values. The proce-
dural pipeline implementing this normalization is
depicted in Figure 2.
The purpose of this study was not to perform a meta-anal-

ysis. The lack of standardized eligibility criteria would have
prevented the analysis of data from the different sites
selected. However, this same variability, both among subjects
and MRI protocols, defines the type of imaging study
brought to the attention of a clinician in his daily practice.
The fact that our algorithm was able to attain a high degree
of accuracy in the midst of this variability provides an attes-
tation as to its potential clinical value. In effect, the diagnostic
effect of our algorithm was consistent across different sites,
thus adding power to the potential conclusion drawn from a
single study. Despite the high dimensional feature space
inherent in our study, the algorithm reported in this study
successfully captured discriminating features across the
entire dataset.
To the best of our knowledge, this is the first study to

include all ABIDE dataset sites, and perform local analysis on
the connectivity features extracted from each individual pair
of areas in order to complete a whole brain connectivity anal-
ysis. This analysis can be used to provide a personalized map
per subject to show affected brain areas and to gage the prob-
ability of a diagnostic difference when comparing autistic
individuals to controls.
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