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Abstract The importance of accurate early diagnostics of
autism that severely affects personal behavior and communi-
cation skills cannot be overstated. Neuropathological studies
have revealed an abnormal anatomy of the Corpus Callosum
(CC) in autistic brains. We propose a new approach to quan-
titative analysis of three-dimensional (3D) magnetic reso-
nance images (MRI) of the brain that ensures a more accurate
quantification of anatomical differences between the CC of
autistic and normal subjects. It consists of three main pro-
cessing steps: (i) segmenting the CC from a given 3D MRI
using the learned CC shape and visual appearance; (ii) ex-
tracting a centerline of the CC; and (iii) cylindrical mapping of
the CC surface for its comparative analysis. Our experiments
revealed significant differences (at the 95% confidence level)
between 17 normal and 17 autistic subjects in four anatomical
divisions, i.e. splenium, rostrum, genu and body of their CCs.
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Introduction

Autistic Spectrum Disorder (ASD), or autism, is a complex
neurological disability characterized by qualitative abnor-

malities in behavior and higher cognitive functions [1]. It
typically appears during the first three years of life and
impacts development of social interaction and communica-
tion skills. Each individual is affected differently at varying
degrees, from milder forms in which intellectual ability is
high but social interaction is low, to the most severe cases
typified by unusual, self-injurious, and aggressive behav-
iors. The latter may persist throughout life and inflict a
heavy burden on those who interact with autistic persons.
Cognitive impairments may also last over time and often
result in mental retardation in the majority of autistic
individuals [2].

Autism is not a rare disorder, as once was thought. Ac-
cording to the Centers for Disease Control and Prevention
(CDC), about 1 in 110 American children fall somewhere
in the autistic spectrum. Although the cause of autism is
still largely not clear, researchers have suggested that
genetic, developmental, and environmental factors may be
the cause or the predisposing effects towards developing
autism [3]. No current cure is specifically designed for
autism. However, educational, behavioral, or skill-oriented
therapies were designed to remedy specific symptoms in
each individual. Such therapies can result in substantial
improvement, particularly when started at a young age.

Neuropathological and neuroimaging studies have re-
vealed a great deal concerning the pathogenesis of autism.
An overview of these studies as well as the proposed ap-
proach for analyzing MRI images of autistic and control
subjects is illustrated below.

Neuropathology of autism

During the past two decades, the study of autism’s neuro-
pathology has dramatically intensified. Most studies have
reported alterations in some regions of the brains in the
autistic individuals compared to typically developing ones.
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Increased head size was the first observed characteristic in
children with autism 60 years ago [4]. Since then, several
studies have reported enlarged brain size and head circum-
ference (HC) in autistic patients. Postmortem studies have
revealed evidence of increased brain weight, while bigger
brain volume and macrocephaly, defined as HC above the
97th percentile [5]. Courchesne et al. [6] showed that while
children with autism have an ordinary brain size at birth,
they experience an acceleration of brain growth resulting,
between 2 and 4 years of age, in increased brain volume
relative to normal brains. By adolescence and adulthood,
differences in the mean brain size between the two groups
diminish largely because of increased relative growth in the
control group; nonetheless, there exists an abnormal
anatomy of cerebral white matter (CWM) in autistic brains
[5, 6].

As an attempt to explain the pervasive symptomatology
of autism, a recent neuropathological study theorized that
the abnormalities in brain anatomy measured in the autistic
brain are mainly due to altered distribution of minicolumns
[7]. Minicolumns are the basic functional units of the brain
that organizes neurons in cortical space [8, 9]. Investigators
suggest that the cortex is made up of hundreds of millions
of minicolumns [9, 10]. These units, having been found in
all areas of the isocortex [11], derive from the radial glia
unit that is present in all mammals [12]. Because of the
large number of modules and their widespread distribution,
abnormalities of the minicolumn’s basic ontogenetic pattern
may provide for macroscopic alterations. Therefore, it is not
surprising that some of the gross changes observed in
putative minicolumnopathies include variations in brain
volume, in gyrification, and in the corpus callosum (CC) [7,
13, 14]. Recently, we have implemented an algorithm that
measures the gyrification window and used it to derive a
macroscopic neuropathological correlate to autism which
relates to neuronal connectivity [14]. The size of the gyral
window directly correlated to the size of the CC. A reduced
gyral window constrains the possible size of projection
fibers and biases connectivity towards shorter cortico-
cortical fibers at the expense of longer association/commi-
sural fibers. Based on these finding, we analyze the
variability of the 3D CC surface in a group of autistic
subjects and controls in order to quantify accurately how
autism is associated with the abnormal neural development
of the CC.

Image-analysis-based autism diagnostics

Multiple studies have identified different brain structures,
e.g. grey matter, white matter, and CC structures, involved
in abnormal neural development associated with autism.
The image-analysis-based detection of such abnormalities
is briefly overviewed below.

○ Grey matter

The grey matter is the brain cortex containing nerve cells
and is responsible for routing sensory or motor stimuli to
inter-neurons of the central nervous system. One hypothe-
sizes the grey matter density in specific regions (regions
thought to be involved in social recognition processes) of
autistic brains is altered. Following this hypothesis, these
brain regions were identified with a voxel-based morphom-
etry (VBM) approach [15–18] using a freely available
public domain software package (SPM [19]). The idea
behind this approach is to normalize the brains stereotacti-
cally to a common space (e.g., an atlas with predefined
anatomic subregions) and use voxel statistics to identify
anatomic brain regions of altered grey matter density. Abel
et al. [15] identified a decreased gray matter volume of the
ASD group relative to the control group in the right para-
cingulate sulcus, the left inferior frontal gyrus, and an
increased gray matter volume in amygdala and periamygda-
loid cortex, middle temporal gyrus, inferior temporal gyrus,
and in regions of the cerebellum. Boddaert et al. [18] found
bilaterally significant decreases of grey matter concentration
located in superior temporal sulcus comparing autistic
children to normal children. Furthermore, a decrease of
white matter concentration located in the right temporal pole
and in the cerebellum was found in children with autism.

○ White matter

The white matter is responsible for connecting different
areas of the gray matter within the nervous system. Several
studies [20–23] attempted to identify how the connectivity
(i.e. the white matter) between different gray matter areas is
related to autism. Herbert et al. [20] applied a VBM
approach and reported that boys ages 7–11 years with
autism had a significantly larger volume of cerebral white
matter (CWM) while cerebral cortex and hippocampus-
amygdala had smaller volumes. Another VBM study [21]
reported white matter volume deficits in the left middle
temporal, right middle frontal, and left superior frontal gyri.
Barnea-Goraly et al. [22] used Diffusion tensor imaging
(DTI) to determine regions related to autism within the
white matter. The DTI analysis derives important features
of the brain tissue, e.g., fractional anisotropy (FA). The
latter microstructural feature reflects how the diffusion
within a voxel depends on orientation, i.e. specifies the
degree of diffusion directionality. The study [22] reported
reduced fractional anisotropy (FA) values in white matter
adjacent to the ventromedial prefrontal cortices and in the
anterior cingulate gyri as well as in the temporoparietal
junctions. Additional clusters of reduced FA values were
reported adjacent to the superior temporal sulcus bilaterally,
in the temporal lobes approaching the amygdala bilaterally,
in occipitotemporal tracts, and in the corpus callosum.
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Our previous diagnostic system [23] attempted to
quantify differences between the shape of CWM gyrifica-
tions for autistic and normal subjects using a three-step
texture analysis of 3D MRI brain images. First, the CWM
was segmented from a 3D MRI image using an evolving
deformable boundary guided by both a probabilistic model
of current visual appearance of the CWM and a learned
prior appearance model. Then, the gyrifications were
extracted from the segmented CWM, and their thickness
was quantified in order to perform the classification.

○ Corpus Callosum (CC)

The CC is the largest fiber bundle connecting the left and
the right cerebral hemispheres in the human brain. Since the
higher cognitive functions of the brain are highly affected
by the impaired communication between the hemispheres,
several studies [24–31] have proposed to analyze the CC
for autistic subjects. In [24–27], the CC had been traced
from the midsagittal MRI slice. Statistical difference
analysis was applied to find out which part in the CC
contributes significantly to identification of autistic brains.
Chung et al. [28] applied a 2D VBM approach based on
SPM software [19] to spatially normalize the midsagital
MRI slice to a common stereotactic space in order to
segment the CC and localize the CC subregions that are
related to autism. To cover more CC anatomy, studies [29–
31] account not only for the midsagital slice but also for
four adjacent slices on both sides. He et al. [29] traced the
CC from the nine slices based on a semi automated active
contour methodology. A contour stitching technique was
applied to create the 3D CC surfaces for each subject.
Statistical difference analysis was applied to the signed
distance map from each subject surface to a template.
Instead of using a signed distance map metric, Vidal et al.
[31] utilized the CC thickness—the distance between
uniformly spaced points on the CC surface to the CC
medial line (i.e., the average curve between superior and
inferior CC boundaries)—to localize regions of callosal
thinning in autism.

Our approach

To identify whether the abnormal neural development of
the CC is associated with autism, we compare directly the
3D surfaces of the CC for normal and autistic subjects. To
the best of our knowledge, all the previous works have
focused on analyzing either the 2D cross section of the
midsagittal of the CC or the midsagital slice along with four
adjacent slices on both sides. Unfortunately, this is
insufficient for detecting the whole anatomic variability of
the CC of autistic subjects. To ensure a complete 3D
analysis, the whole CC surface (traced from all the slices in
which the CC appears) is mapped onto a cylinder in such a

way as to compare more accurately various autistic and
normal CCs. Our cylindrical mapping has been inspired by
the functional conformal mapping [32]. Similar to the con-
formal mapping, it is a bijective (one-to-one) transforma-
tion and preserves angular relationships between the points.
For these reasons, the conformal mapping was recently
considered an efficient technique for surface matching [33]
and visualization of various anatomic structures [34].

Methods

In this section, we will overview in brief our CC seg-
mentation using a learned prior CC shape model and an
identifiable joint Markov-Gibbs random field (MGRF)
model of 3D MRI and 3D “object-background” region
maps. Similar techniques have been already successful in
segmenting various 2D MRI and CT objects (see e.g. [35,
36]), and the current algorithm has been modified to ac-
count for specific properties of the 3D CC. In this modi-
fication a 3D shape is described by a probabilistic model
rather than a more conventional distance map. In addition,
the centerline extraction for the segmented CC by solving
the Eikonal equation is shown. In contrast to the known 2D
solutions, e.g. in [35], the proposed process evolves in the
3D space in order to detect 3D points of the maximal cur-
vature. Finally, the cylindrical mapping employed to
evaluate the variability of the CC, after finding its centerline,
is described.

Corpus callosum segmentation using a prior shape model

Let Q ¼ 0; 1; :::;Q" 1f g be a set of Q integer grey levels
and L = {0,1} be a set of object (“1”) / background (“0”)
labels. A 3D grid R ¼ x; y; zð Þ : x ¼ 0; 1; :::;X " 1; y ¼ 0;f
1; :::;Y " 1; z ¼ 0; 1; :::Z " 1g of voxels with integer Carte-
sian coordinates (x,y,z) supports grayscale MRI g:R→Q and
their region maps m:R→L. Let Ps ¼

Q
x;y;zð Þ2R px;y;z be a

prior probability distribution of co-registered CC shapes to
be used for registering (aligning) the 3D MRI, px,y,z being the
voxel-wise object probability. Let a Gibbs distribution P(m)
specify a Markov-Gibbs random field (MGRF) model of the
co-registered region maps. Let P gjmð Þ ¼

Q
x;y;zð Þ2R pmx;y;z

gx;y;z
! "

be a conditionally independent distribution of the MRI
signals, given the map. A joint distribution Ps g;mð Þ ¼ P
gjmð ÞP mð ÞPs specifies the MRGF model of the co-
registered 3D MRI and their region maps.

As shown in Fig. 1, our objectives are to identify accu-
rately a shape prior Ps for the co-aligned 3D MRI images,
spatial label interactions in the model P(m) of co-aligned
region maps, and conditionally independent voxel-wise inten-
sity distributions in the image model P(g|m). The shape prior
Ps is learned from a training set of maps for manually
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Fig. 1 Joint Markov-Gibbs
random field model of 3D MR
images

(a) (b) (c)

  

  

  

 

Fig. 2 Shape reconstruction
(2D illustrations): database
samples (a), affine mutual in-
formation based registration (b),
and manual segmentation (c)
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segmented and co-aligned images. To perform an initial CC
segmentation, a given MRI image g is aligned to one of the
training images. The shape prior Ps ¼

Q
x;y;zð Þ2R px;y;z is

used, together with the conditional image intensity model P
(g|m), to build an initial region map m. Then a joint MGRF
model Ps g;mð Þ ¼ P gjmð ÞP mð ÞPs identified from the 3D
MRI g and its initial region map m is used for the final
Bayesian segmentation.

○ Spatial voxel interaction in the CC

A generic MGRF of region maps in [37] accounts only
for pairwise interaction between each region label and its
characteristic neighbors. Generally, the interaction structure
and the Gibbs potentials can be arbitrary and are identified
from the training data. For simplicity, we restrict the
interaction structure to the nearest voxels only (i.e. with
the 26-voxel neighborhood). By symmetry considerations,
we assume that the potentials are independent of relative
orientation of each voxel pair and depend only on intra- or
inter-region position (i.e. whether the labels are equal or
not). Under these restrictions, it is the 3D extension of the
conventional auto-binomial, or Potts model differing only
in that the potentials are estimated analytically.

The 26-neighborhood has three types of symmetric pair-
wise interactions specified by the absolute distance a between

two voxels in the same and adjacent MRI slices (a = 1,
ffiffiffi
2

p
,

and
ffiffiffi
3

p
, respectively): (i) the closest pairs with the inter-

voxel N1 = {(1,0,0),(0,1,0),(0,0,1)} coordinate offsets; (ii)
the diagonal pairs with the offsets N ffiffi

2
p ¼ 0; 1;$1ð Þ; 1; 0;$ðf

1Þ; 1;$1; 0ð Þg; and (iii) the farthest diagonal pairs with the
offsets N ffiffi

3
p ¼ 1;$1;$1ð Þf g. The Gibbs potentials of each

type are bi-valued because only label coincidence is
accounted for: Va ¼ Va;eq;Va;ne

" #
where Va;eq % Va l; l0ð Þ if

l ¼ l0 and Va;ne % Va l; l0ð Þ if l 6¼ l0; a 2 A ¼ 1;
ffiffiffi
2

p
;

ffiffiffi
3

p" #
.

Then the MGRF model of region maps is as follows:

P mð Þ ¼ 1
Z
exp

X

x;y;zð Þ2R

X

a2A

X

x;h;kð Þ2N
Va mx;y;z;mxþx;yþh;zþk

$ %

ð1Þ

where Z is the normalizing factor (partition function).
To identify the MGRF in Eq. 1, approximate analytical

maximum likelihood potential estimates are formed as
follows1:

Va;eq ¼ 'Va;ne ¼ 2 fa;eq mð Þ ' 1
2

& '
ð2Þ

Here, fa,eq(m) denotes the relative frequency of the equal
labels in the equivalent voxel pairs x; y; zð Þ; xþ x; yþððf
h; zþ kÞÞ : x; y; zð Þ 2 R; xþ x; yþ h; zþ kð Þ 2 R; x; h; kð Þ
2 Nag of a region map m of a given MRI aligned in accord
with the prior shape model.

○ Conditional intensity model for 3D MRI

Just as in [36, 38], a 3D MRI, given a region map, is
modeled with a simple conditionally independent random
field of voxel intensities: P gjmð Þ ¼

Q
x;y;zð Þ2R pmx;y;z gx;y;z

( )
where

the voxel-wise probability distributions pl ¼ plðqÞ : q 2 Q½ );
l 2 L, for the CC and its background are estimated during
the segmentation. To separate p0 and p1, the mixed empiri-
cal distribution of all voxel intensities is closely approxi-
mated with a linear combination of discrete Gaussians
(LCDG) with two dominant modes related to the object (i.e.

Fig. 3 Saggital cross-section in the estimated 3D voxel-wise
probabilities of the CC shape

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Steps of the proposed centerline algorithm illustrated by the
saggital 2D cross-sections of the 3D CC (a), estimated 3D CC edges
(b), the normalized distance map (c), the orthogonal wave propagated
from A (d), the extracted centerline (e), and its 3D visualization (f)

(a) (b)

Fig. 5 2D (a) and 3D (b) illustrations of re-slicing

1 To the best of our knowledge, we are the first authors who
introduced an analytical form to estimate Gibbs potentials [36].
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the CC) and background, respectively. The LCDG includ-
ing numbers of its positive and negative terms is obtained
with our previous Expectation-Maximization-based algo-
rithm introduced in [36, 38].

○ Prior CC shape model

Most of the recent works on image segmentation use
level set based representations of shapes: an individual
shape is outlined by a set of boundary pixels or voxels at
the zero level of a certain signed distance function, and
each given shape is approximated with the closest linear
combination of the training shapes. The main drawback of
this representation is that the space of distances is not
closed with respect to linear operations. As a result, linear
combinations of the distance functions may relate to invalid
or even physically impossible boundaries.

To circumvent this limitation, the probabilistic 3D CC
shape model Ps ¼

Q
x;y;zð Þ2R px;y;z where px,y,z is the empir-

ical probability that the voxel (x,y,z) belongs to the CC is
learned from the co-registered training MRI. Such a prior is
constructed by co-aligning the training set of MRI by a
rigid 3D registration using mutual information as similarity
measure [39] (Fig. 2(a; b)); segmenting the CCs by hand
from the aligned set (Fig. 2(c)), and counting how many
times each voxel (x, y, z) was segmented as the CC (Fig. 3).

○ Segmentation algorithm

In total, the proposed CC segmentation process involves
the following steps:

1. Affine alignment of a given 3D MRI to an arbitrary CC
prototype from the training set using mutual informa-
tion as similarity measure.

2. Estimating the conditional intensity model P(g|m) by
identifying the bimodal LCDG.

3. Forming an initial region map m of the CC by using the
found conditional intensity model and the learned prior
shape model.

4. Identifying the MGRF model P(m) from the initial map
and updating the conditional intensity model P(g|m).

5. Final Bayesian CC segmentation using the updated
joint MGRF model Ps(g,m).

Centerline extraction from the CC

The problem of extracting the centerline connecting splenium
(e.g. the point A in Fig. 4(a)) with rostrum (the point B) can
be formulated as a minimum-cost problem: find the path that
minimizes the cumulative cost of traveling from the starting
point A to the destination B. As defined in [40], if W(x, y, z)
is a cost function at any location (x,y,z) inside the CC then
the minimum cumulative cost at the location B = (x′, y′, z′) is

TðBÞ ¼ min
CAB

ZL

0

W CðlÞð Þdl ð4Þ

where L is the path length and CAB is a set of all possible
paths linking A to B such that C(0) = A and C(L) = B are the
starting and ending points of each path CðlÞ 2 CAB. The
minimum cost path solving Eq. 4 also satisfies the solution
of the Eikonal equation:

rT x; y; zð Þj jF x; y; zð Þ ¼ 1 ð5Þ

(a) (b)

Fig. 7 Typical MRI slices (a)
and the estimated density using
four Gaussian components to
represent each class in the brain
images (b)

(a) (b) (c)

Fig. 6 Cylindrical mapping: a cross-section of the re-sliced CC (a),
the CC cross-section mapped onto a circle (b), placing the circle onto
the corresponding location in the cylinder (c)
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where T(x, y, z) is the time at which the front evolving from
the point A crosses the point (x,y,z) and F(x, y, z)is the speed
function.

We propose a new algorithm to extract the centerline of
the 3D CC based on solving Eq. 5:

1. Find the boundary of the segmented CC by estimating
its 3D edges (see Fig. 4(b)).

2. Find the normalized minimum Euclidian distance D(x, y,
z) from every inner CC point (x,y,z) to the CC boundary
(Fig. 4(c)) by solving Eq. 5 using the fast marching level
sets at the unit speed function, F(x, y, z) = 1 [41].

3. Extract points located on the 3D centerline of the CC as
follows:

(a) Pick any splenium point as a starting point, A.
(b) Propagate an orthogonal wave from the point A by

solving Eq. 5 using the fast marching level sets at the
speed function F x; y; zð Þ ¼ exp $D x; y; zð Þð Þ (Fig. 4(d)).

(c) Track the point with the maximum curvature as in
[35, 42] and located at the maximum distance from
the CC boundary for each propagating wave front
(Fig. 4(e,f)), this point being considered at any time
as corresponding to the starting point A.

(a)

(c)

 
(e)

(b)

(d)

(f)

Fig. 8 Deviations and absolute
deviations between f (q) and
p4(q) (a), estimated density of
the absolute deviation (b),
LCDG components (c), final
estimated joint density (d), final
estimated marginal density for
each class (e), and final esti-
mated marginal density for the
CC and other brain structures (f)

J Med Syst (2011) 35:929–939 935
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(d) The point B at which the maximum curvature
point of the propagating wave hits rostrum of the
CC is selected as the end point of the centerline.

Cylindric mapping to evaluate CC variability

We reveal differences between the autistic and normal CC
by using cylindric transformation. Before applying the
cylindric transformation, the extracted 3D CC is re-sliced
by generating planes that are orthogonal to and equidistant
along the centerline as shown in Fig. 5(a,b). The re-slicing
transforms 3D coordinates (x, y, z) of the voxels associated
with each subsequent slice k into specific new coordinates
(i, j, k) where (i, j) are 2D coordinates in the corresponding
slicing plane k. A boundary point (i, j) of each slice k is
related to the surface of a cylinder with a fixed radius ρ as
shown in Fig. 6. The rectified centerline of the CC is
superposed onto the cylinder axis. Polar coordinates (r, θ)
of the boundary point (i, j, k) with respect to the slice center
(i0, j0, k), being the trace of the centerline:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i" i0ð Þ2 þ j" j0ð Þ2

q
; q ¼ tan"1 j" j0

i" i0

" #
ð6Þ

Results

The proposed approach has been tested on in-vivo data
collected from 17 autistic subjects aged 16 to 22 years, and
a group of 17 controls who match for gender, age, edu-
cational level, socioeconomic background, handedness, and
general intelligence. All the subjects are physically healthy
and free of history of neurological diseases and head injury.
Briefly, all the subjects have exactly the same psychiatric
conditions. All images were acquired with the same 1.5T
MRI scanner (GE, Milwaukee, Wisconsin, USA) with
voxel resolution 1.0×1.0×1.25 mm3 using a T1 weighted
imaging sequence protocol. The “ground truth” diagnosis to
evaluate the classification accuracy for each patient was
given by clinicians.

A typical stack of MRI slices, its empirical marginal
gray level distribution f(q), and the initial 4-component
Gaussian dominant mixture p4(q) are shown in Fig. 7.
Figure 8 presents the steps of density estimation of the

Normal Subjects Autistics Subjects

A 

C 

S 

Fig. 9 Automated 3D CC
segmentation results projected
onto the 2D axial (A), coronal
(C), and saggital (S) planes for
visualization

936 J Med Syst (2011) 35:929–939
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LCDG-model using the modified EM-algorithm. The final
LCDG of the CC and other brain structures are shown in
Fig. 8(f). The CC segmentation is illustrated in Figs. 9, 10,
and Table 1 shows comparative results for the 17 data sets
which are not used in the training with the known ground
truth (manually segmented by an expert). The differences in
the mean errors between the proposed segmentation, the level-
set shape based approach of Tsai et al. [34], and ASM seg-
mentation [44] are statistically significant according to the
unpaired t-test (the two-tailed value P is less than 0.0001).

Figures 11(a) and (b) present the average cylindrical
maps for 17 normal subjects and 17 autistic subjects. As
shown in Fig. 11(c), some locations in these maps differ
significantly for the normal and autistic subjects at the
95% confidence level. The inverse cylindrical mapping
outlines the significant areas on the average CC of normal
subjects as shown in Fig. 12. These areas show that these
significant differences (at the 95% confidence interval)
exist in the four anatomical divisions of the CC, namely,
splenium, rostrum, genu, and body. Fig. 12 demonstrates
that the CC body for the autistic subjects is thinner than
for the normal ones.

Discussion

The reduction of the body of the CC of autistic subjects that
is demonstrated in this paper is perfectly correlated with the
Meta-Analysis study which was done by Frazier et al. [45].
Frazier et al. made a statistical analysis for the results of 10
studies (from 1987 to 2007) with contributed data from 253
patients with autism and 250 healthy control subjects [24–
27, 31, 46–50]. Moreover, the proposed 3D mapping
approach has the capability to demonstrate the whole
anatomical differences (voxel-based) between CC of nor-
mal and autistic brains instead of only differences in the CC
divisions (area-based) as done with the previous groups
[24–27, 31, 46–50]. Thus, the existing differences in all
anatomical divisions of the CC, namely, splenium, rostrum,
genu and body were identified as shown in Fig. 12.

Conclusion

In total, our preliminary results suggest that the proposed
approach can detect significant differences in the four

(a) (b) (c)

Fig. 11 Average cylindrical maps of the normal (a) and autistic (b)
subjects and areas (c) of the 95%-significant difference between the
normal and autistic subjects

Fig. 12 Color-coded anatomical differences between the CC for
normal and autistic subjects: the common parts (gray), parts existing
for normal but not for autistic subjects (blue), and parts existing for
autistic but not for normal subjects (pink)

Table 1 Accuracy on 17 data sets of our segmentation comparing to
the level sets based segmentation [43] and the active shape model
(ASM) segmentation [44]

Algorithm

Our [43] [44]

Minimum error, % 0.17 6.70 10.50

Maximum error, % 2.15 14.10 23.30

Mean error, % 1.30 9.70 13.98

Standard deviation, % 1.70 3.30 7.10

Significant difference, P-value 0.0001 0.0001

Normal Subjects

Autistic Subjects

Fig. 10 3D CC of the normal and autistic subjects
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anatomical divisions of the CC. Moreover, it has the ability
to demonstrate the voxel-based anatomical differences
between CC of normal and autistic brains instead of only
area-based as done with the previous groups. In our future
work, different brain structures will be investigated in order
to quantitatively characterize the development and temporal
changes of an autistic brain in order to achieve our ultimate
goal for developing an efficient non-invasive computer-
assisted system for early diagnosis of autism.
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