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ABSTRACT

Autism is a developmental disorder characterized by social deficits, im-
paired communication, and restricted and repetitive patterns of behav-
ior. Recent neuropathological studies of autism have revealed abnormal
anatomy of the cerebral white matter (CWM) in autistic brains. In this
paper we introduced a novel approach to classify autistic from normal
subjects based on a new shape analysis of cerebral white matter gyrifi-
cations for both normal and autistic subjects. The proposed shape anal-
ysis technique consists of three main steps. The first step is to segment
cerebral white matter from proton density MRI images using a priorly
learned visual appearance model for the 3D cerebral white matter in or-
der to control the evolution of deformable boundaries. The appearance
prior is modeled with a translation and rotation invariant Markov-Gibbs
random field of voxel intensities with a pairwise interaction model. The
second step is to extract the gyrifications of cerebral white matter from
the segmented cerebral white matter. The last step is to perform shape
analysis to quantify the thickness of the extracted cerebral white matter
gyrifications for both autistic and normal subjects. The preliminary re-
sults of the proposed image analysis has yielded promising results that
would, in the near future, supplement the use of current technologies
for diagnosing autism.

1. INTRODUCTION

Autism is an idiopathic developmental psychiatric disorder character-
ized by marked deficits in communication, social interaction, and in-
terests. These deficiencies typically manifest themselves in stereotypic
behavioral patterns that are restricted, repetitive, and ritualistic. During
postnatal development, a significant percentage of autistic children ex-
hibit macrocephaly and a concomitant increase in brain weight and vol-
ume (macroencephaly) [1]. The prevalence of children diagnosed with
autism has rapidly increased during the last few decades. Although the
reason for this rise in prevalence is debated in the literature, best es-
timates indicate that autism affects as many as 1 in 300 children [2].
The etiology of autism remains unclear, but research suggests a mul-
tifactorial diathesis (i.e., the interplay of genetic, developmental, and
environmental factors) [3]. There is no cure for autism; however, ther-
apies targeting specific symptoms may result in substantial improve-
ment, particularly when started at a young age.

Neuroimaging and neuropathological studies have revealed a great
deal concerning the pathogenesis of autism. An increase in cell packing
and a reduction in cell size have been found in the limbic system of
autistic individuals [4]. MRI studies have reported reductions in the
corpus callosum in autistic subjects, but findings have been inconsistent
as to which segment is abnormal [5, 6].

Recent neuropathological studies of autism have revealed abnormal
anatomy of cerebral white matter (CWM) in autistic brains [7]. In ad-
dition, the deficits in the size of the corpus callosum and its sub-regions
are well established in patients with autism relative to controls. In this
work, we aim at using the reported abnormalities of CWM in order
to devise robust classification methods of autistic vs. normal subjects
through analysis of their respective MRIs. To overcome the limitations

and shortcomings of the volumetric studies, our analysis is based on a
new shape analysis in order to get accurate description of cerebral white
matter gyrifications for both normal and autistic subjects.

2. METHODS

The objective of the proposed image analysis approach is to quantify
the difference between the shape of cerebral white matter gyrifications
for autistic subjects and controls (normals) without using traditional
volumetric measurements. To achieve this goal an image analysis sys-
tem consisting of three steps is proposed. These steps are: 1) segmen-
tation of cerebral white matter from Proton Density MRI (PD-MRI)
images, 2) extraction of cerebral white matter gyrifications from the
segmented cerebral white matter, and 3) quantification of the thickness
of cerebral white matter gyrifications.

All the proposed approaches in this paper have been run on the
postmortem brains which were obtained from the Autism Tissue Pro-
gram (ATP). Diagnosis for each patient was established by the Autism
Diagnostic Interview-Revised (ADIR). Postmortem brains from 23 autis-
tic patients (mean interval between death and autopsy: 25.8 hours)
and from 16 controls (mean interval between death and autopsy: 20.4
hours) were analyzed. All these brain tissues were scanned by 1.5 Tesla
GE MRI system with voxel resolution 1×1×1.5 using a proton density
weighted imaging sequence protocol (for more details see [8]).

2.1. Cerebral White Matter Segmentation

Accurate segmentation of cerebral white matter from PD-MRI is a chal-
lenge since the gray level distribution of cerebral white matter and sur-
rounding organs is not highly distinguishable. Thus we used a prior
learning appearance model of cerebral white matter to control the evo-
lution of the deformable models in the segmentation process.

Conventional deformable model moves in the direction that min-
imizes the boundary energy E such as e.g. in [9]:

E = Eint + Eext =

∫

k∈K

(ζint (b(Pk)) + ζext (b(Pk))) dk (1)

where b = [Pk : k = 1, . . . , K] be a deformable piecewise-linear
boundary with K control points Pk = (xk, yk, zk), ζint (b(Pk)) and
ζext (b(Pk)) are internal and external forces, respectively.

In this paper we present a new class of the external energy that
guided the evolution of deformable model based on learning prior ap-
pearance model of cerebral white matter.

Image normalization: To account for monotone (order-preserving)
changes of signals (e.g. due to different scanners or sensor characteris-
tics), for each data set, we calculate the occurrence histogram, then we
normalize the given data set to make qmax = 255.

MGRF-based prior appearance model: To exclude any align-
ment stage before segmentation, the appearance of cerebral white mat-
ter is modeled with a translation and rotation invariant generic MGRF
with voxel-wise and central-symmetric pairwise voxel interaction spec-
ified by a set N of characteristic central-symmetric voxel neighbor-
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hoods {nν : ν ∈ N} on R and a corresponding set V of Gibbs poten-

tials, one potential per neighborhood [10].

(a) (b)

Fig. 1. Central-symmetric 2D (a) and 3D (b) neighborhoods for the

eight distance ranges [dν,min = ν − 0.5, dν,max = ν + 0.5); ν ∈ N =
{1, . . . , 8} on the lattice R.

A central-symmetric voxel neighborhood nν embraces all voxel

pairs such that (x, y, z)-coordinate offsets between a voxel (x, y, z)
and its neighbor (x′, y′, z′) belong to an indexed semi-open interval

[dν,min, dν,max); ν ∈ N ⊂ {1, 2, 3, . . .} of the inter-voxel distances:

dν,min ≤
√

(x− x′)2 + (y − y′)2 + (z − z′)2 < dν,max. Figure 1

illustrates the neighborhoods nν for the uniform distance ranges [ν −
0.5, ν + 0.5); ν ∈ N = {1, . . . , 8}.

The interactions in each neighborhood nν have the same Gibbs

potential function Vν of gray level co-occurrences in the neighboring

voxel pairs, and the voxel-wise interaction is given with the potential

function Vvox of gray levels in the voxels:

Vvox = [Vvox(q) : q ∈ Q]; {Vν = [Vν(q, q′) : (q, q′) ∈ Q2] : ν ∈ N}] (2)

Model identification: Let (x, y, z) denote Cartesian coordinates

of points in a finite arithmetic lattice R = [(x, y, z) : x = 0, . . . , X −
1; y = 0, . . . , Y − 1, z = 1, . . . , Z − 1]. It supports a given 3D

grayscale image g = [gx,y,z : (x, y, z) ∈ R; gx,y,z ∈ Q] with

gray levels from a finite set Q = {0, . . . , Q − 1} and its region map

m = [mx,y,z : (x, y, z) ∈ R; mx,y,z ∈ L] with region labels from a

finite set L = {CWM, bg}. Each label mx,y,z indicates whether the

pixel (x, y, z) in the corresponding data set g belongs to the goal ob-

ject (cerebral white matter), mx,y,z = CWM, or to the background,

mx,y,z = bg. Let Rt = {(x, y, z) : (x, y, z) ∈ R ∧ mt;x,y,z =
CWM} and Cν,t denote the part of the 3D lattice R supporting the

training cerebral white matter in the image–map pair (gt,mt) ∈ S and

the family of voxel pairs in R2
t with the co-ordinate offsets (ξ, η, γ) ∈

nν , respectively. Let Fvox,t and Fν,t be a joint empirical probability

distribution of gray levels and of gray level co-occurrences in the train-

ing cerebral white matter from the image gt, respectively: Fvox,t =

[fvox,t(q) =
|Rt,q|
|Rt| ;

∑
q∈Q fvox,t(q) = 1] and Fν,t = [fν,t(q, q

′) =
|Cν,t;q,q′ |

|Cν,t| ;
∑

(q,q′)∈Q2 fν,t(q, q
′) = 1] where Rt,q = {(x, y, z) :

(x, y, z) ∈ Rt ∧ gx,y,z = q} is a subset of voxels supporting the

gray level q in the training cerebral white matter from the image gt and

Cν,t;q,q′ is a subfamily of the voxel pairs cξ,η,γ(x, y, z) = ((x, y, z), (x+
ξ, y + η, z + γ)) ∈ R2

t supporting the gray level co-occurrence (q, q′)
in the same cerebral white matter, respectively.

The MGRF model of the t-th object is specified by the joint Gibbs

probability distribution on the sublattice Rt:

Pt =
1
Zt

exp(|Rt|(VT
voxFvox,t +

∑

ν∈N

ρν,tV
T
ν,tFν,t)) (3)

where ρν,t = |Cν,t|/|Rt| is the average cardinality of the neighbor-

hood nν with respect to the sublattice Rt.

To simplify notation, let areas of the training cerebral white matter

images be similar, so that |Rt| ≈ RCWM and |Cν,t| ≈ Cν,CWM for

t = 1, . . . , T , where RCWM and Cν,CWM are the average cardinalities

over the training set S. Assuming the independent samples, the joint

probability distribution of gray values for all the training cerebral white

matter images is as follows:

PS =
1
Z

exp

(
TRCWM

(
VT

voxFvox +
∑

ν∈N

ρνV
T
νFν

))
(4)

where ρν = Cν,CWM/RCWM, and the marginal empirical distributions

of gray levels Fvox,CWM and gray level co-occurrences Fν,CWM de-

scribe now all the cerebral white matter images from the training set.

Zero empirical probabilities caused by a relatively small volume of

the training data available to identify the above model are eliminated

if fractions defining the empirical probabilities in terms of cardinali-

ties of the related sublattices or subfamilies are modified as follows:

(〈nominator〉+ε)/(〈denominator〉+Sε). With the Bayesian quadratic

loss estimate, ε = 1 and S = Q for the first-order or S = Q2 for the

second-order interactions.

Using the analytical approach similar to that in [11], the potentials

are approximated with the scaled centered empirical probabilities:

Vvox,CWM(q) = λ
(
fvox,CWM(q)− 1

Q

)
; (q) ∈ Q;

Vν,CWM(q, q′) = λ
(
fν,CWM(q, q′)− 1

Q2

)
; (q, q′) ∈ Q2

(5)

where the common factor λ is also computed analytically. It can be

omitted (λ = 1) if only relative potential values are used for computing

relative energies Eν,rel of the central-symmetric pairwise voxel inter-

actions in the training data. The energies that are equal to the variances

of the co-occurrence distributions:

Eν,rel =
∑

q,q′∈Q2

fν,CWM(q, q′)

(
fν,CWM(q, q′)− 1

Q2

)

allow for ranking all the central-symmetric neighborhoods nν and se-

lecting the top-rank, i.e. most characteristic ones N′ ⊂ N to include to

the prior appearance model of Eq. (5). Under the model, any grayscale

pattern within a deformable boundary b in an image g is described by

its Gibbs energy

E(g,b) = VT
vox,CWMFvox,CWM(g,b) +

∑

ν∈N′

VT
ν,CWMFν,CWM(g,b)

(6)

where N′ is an index subset of the selected top-rank neighborhoods,

and the empirical probability distributions are collected within the bound-

ary b in g.

Boundary evolution using prior appearance model: The follow-

ing external energy term in Eq. (1) used the learned prior appearance

model to guide an evolving boundary in a way such that maximizes the

energy within the boundary:

ζext (b(Pk = (x, y, z))) = −πp(gx,y,z|S) (7)

where πp(q|S) is the prior conditional probability of the gray level q,

given the current gray values in the characteristic central-symmetric

neighborhoods of Pk, for the MGRF prior model:

πP(gx,y,z|S) =
exp (EP(gx,y,z|S))∑
q∈Q

exp (EP(q|S))

where EP(q|S) is the voxel-wise Gibbs energy for a gray level q as-

signed to P and the current fixed gray levels in all neighbors of P in

the characteristic neighborhoods nν ; ν ∈ N:

EP(q|S) = Vvox,CWM(q) +
∑

ν∈N

∑

(ξ,η,γ)∈nν

(Vν,CWM(gx−ξ,y−η,z−γ , q)

+ Vν,CWM(q, gx+ξ,y+η,z+γ)) (8)

The evolution of the deformable model terminates after the total energy

Er of the region r ⊂ R inside the boundary b does not change:

Er =
∑

∀P=(x,y,z)∈r

EP(gx,y,z|S) (9)
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The deformable boundary b evolves in discrete time, τ = 0, 1, . . . , T ,
as follows:

1. Initialization (τ = 0):

(a) Initialize a boundary inside the cerebral white matter.

2. Evolution (τ ← τ + 1):

(a) Calculate the total energy of Eq. (9) within the current
boundary bτ .

(b) For each control point Pk on the current boundary, indi-
cate the exterior (−) and interior (+) nearest neighbors
with respect to the boundary [12].

(c) For each (+)-point, calculate the total energy of Eq. (1)
for each new candidate for the current control point.

(d) Select the minimum-energy new candidate.
(e) Calculate the total energy of Eq. (9) within the boundary

that could have appeared if the current control point has
been moved to the selected candidate position.

(f) If the total energy increases, accept this new position of
the current control point, otherwise for each (−)-point,
calculate the total energy of Eq. (1) for each new candi-
date for the current control point.

(g) Select the minimum-energy new candidate.
(h) Calculate the total energy of Eq. (9) within the boundary

that could have appeared if the current control point has
been moved to the selected candidate position.

(i) If the total energy increases, accept this new position of
the current control point.

(j) Otherwise do not move the current control point because it
is already located on the edge of the cerebral white matter
region.

(k) Mark each voxel visited by the deformable boundary.
(l) If the current control point moves to the voxel visited ear-

lier, then find the edge formed by the already visited vox-
els and use the edge points as the new control points of the
deformable boundary.

(m) If the new control points appear, interpolate the whole
boundary using cubic splines and then smooth its control
points with a low pass filter.

(n) If the total energy within the boundary does not change,
terminate the process; otherwise return to Step 2b.

The proposed segmentation algorithm was tested on a 39 PD-MRI
data sets with resolution 512 × 512 × 114. Figure 2 illustrates results
of segmenting cerebral white matter shown by axial, sagittal, and coro-
nal cross sections. The pixel-wise Gibbs energies in each cross section
are higher for the cerebral white matter than for any other brain tissues.
Therefore, our approach separates accurately the cerebral white matter
from other background tissues. The evolution terminates after 226 it-
erations because the changes in the total energy become close to zero.
The error of our segmentation with respect to the radiologist “ground
truth” is 2.06%. Figure 3 shows more 3D segmentation results of cere-
bral white matter.

3. SHAPE ANALYSIS OF CEREBRAL WHITE MATTER
GYRIFICATIONS AND EXPERIMENTAL RESULTS

We hypothesize that the thickness of gyral cerebral white matter in nor-
mal subjects will be greater than in autistic subjects (Fig. 4). To quan-
tify this feature, first we need to extract cerebral white matter gyrifica-
tions form the segmented cerebral white matter. In this paper, we devel-
oped a new approach to extract cerebral white matter gyrifications au-
tomatically from the segmented cerebral white matter. This approach is
based on calculating the distance map inside the 3D segmented cerebral
white matter using a fast marching level set method [12]. The distance

A

C

S
(a) (b) (c) (d)

Fig. 2. 3D segmentation of cerebral white matter; results are projected onto 2D
axial (A), coronal (C), and saggital (S) planes for visualization: 2D profile of
the original PD-MRI images (a), pixel-wise Gibbs energies (b) for ν ≤ 9, our
segmentation (c), and (d) the radiologist’s segmentation.

Fig. 3. 3D visualization of the segmented cerebral white matter using the pro-
posed approach

map at any point inside the segmented object is defined as the minimum
Euclidian distance from the boundary (Fig. 5). We used our previous
LCDG probabilistic model [11] to estimate the marginal density for dis-
tances that belong to cerebral white matter gyrifications (class 1) and
distances that belong to the other cerebral white matter tissues (class 2)
as shown in Fig. 5(b). Using the marginal density, we can extract the
cerebral white matter gyrifications by estimating the best threshold that
discriminates between the distances from cerebral white matter gyrifi-
cations and the distances from the other cerebral white matter tissues
as shown in Fig. 6.

For the classification purposes, we use Cumulative Distribution
Function (CDF) of the distance map inside the extracted gyrifications
of cerebral white matter as a discriminatory shape feature of the CWM
structure. Figure 7(a) shows the CDFs for 14 subjects (7 autistics and
7 normals), It is clear from this figure that the two classes, autistic and
normal, are completely separable which encouraged us to use the CDFs
of distance maps as a discrimination measure between the two classes.
In order to use the CDF to classify subjects as control or autistic, the
Levy distance was calculated [13]. The Levy distance is defined as the
distance between the CDF of the distance map inside the extracted cere-
bral white matter gyrifications of a given object and the average CDF of
the distance map inside the extracted cerebral white matter gyrifications
of autistic or normal subjects (Fig. 7(b)). Mathematically, the Levy dis-
tance between the CDF of unknown object Fu and the average CDF of
autistic/normal subjects FA/N (Fig. 7(c,d)) is defined as follows [13]:

ρ(Fu, FA/N) = min
α>0

{α : FA/N (d− α)− α ≤ Fu(d) ≤ FA/N (d + α) + α}
(10)

The proposed approach has been applied on 39 data sets (16 nor-
mal, and 23 autistic). Accuracy of classification was performed using
Chi square test at three confidence levels - 85%, 90% and 95% to exam-
ine significant differences in Levy distance. As expected, the 85% con-
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(a) (b)

Fig. 4. Segmented cerebral white matter in a control case (a) and in an autistic
patient (b). Note that the gyri in the person with autism appear thinner than those
of the normal comparison subject.

(a) 0 5 10 15
0

0.005

0.01

0.015

0.02

pi(d)
po(d)
f(d)

t=2.35

d

inside cortex grification pi(d)
outside cortex grification po(d)

Emperical density f(d)

(b)

Fig. 5. (a) Coronal section in the 3D distance map for the segmented cerebral
white matter (note that the boundary of segmented cerebral white matter shown
in green color) and (b) estimated marginal density for each class from the mixed
empirical density (normalized histogram) for the distances inside the segmented
cerebral white matter.

fidence level yielded the best results - correctly classifying 22/23 autis-
tics, a 0.96 accuracy rate, and 15/16 controls, a 0.94 accuracy rate. At
the 90% confidence level, 22/23 autistics were still classified correctly,
however, 14/16 controls were correctly classified, bringing the accuracy
rate for controls down to 0.88. The 95% confidence level had smaller
accuracy rates for both groups; correctly classifying 20/23 autistics, a
0.87 accuracy rate and 14/16 controls, a 0.88 accuracy rate. Overall
these results show that the geometric method yields significantly accu-
rate results.

4. CONCLUSION AND FUTURE WORK

In this paper a new geometrical approach for discriminating the autis-
tic and normal control subject has been proposed. It is different from
traditional techniques which depend only on volumetric descriptions of
different brain structures and are sensitive to the selection of ages and
segmentation methods. We will focus on describing the shape of differ-
ent brain structures such that a discriminating feature can be achieved.
Preliminary results for the cerebral white matter comparison have been
demonstrated and the Levy distance shows a significant difference be-
tween selected normals and autistics. Different brain structures will be
investigated in order to follow the development and variations of the
autistic brain with time. The investigation will not be limited to the
cerebral white matter region but also will include the gray matter study.
The approach will be tested on more data sets for more results and val-
idation.

(a) (b) (c)

Fig. 6. 2D (a, b) and 3D (c) visualization of the extracted cerebral white matter
gyrifications (shown in red (2D) and pink (3D) colors)
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Fig. 7. (a) Cumulative distribution of distance map inside segmented 14 sub-
jects (seven normals and seven autistics), (b) average CDFs for autistic and nor-
mal subjects, and (c,d) the proposed classification approach of unknown subjects
(green) using Levy distance (ρ); (c) normal, (d) autistic.
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