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ABSTRACT

To discriminate more accurately between autistic and normal
brains, we detect the brain cortex variability using a spherical har-
monic analysis that represents a 3D surface supported by the unit
sphere with a linear combination of special basis functions, called
spherical harmonics (SHs). The proposed 3D shape analysis is car-
ried out in five steps: (i) 3D brain cortex segmentation, with a de-
formable 3D boundary, controlled by two probabilistic visual ap-
pearance models (the learned prior and the estimated current appear-
ance one); (i) 3D Delaunay triangulation to construct a 3D mesh
model of the brain cortex surface; (iii) mapping this model to the unit
sphere; (iv) computing the SHs for the surface; and (v) determining
the number of the SHs to delineate the brain cortex. We describe the
brain shape complexity with a new shape index, the estimated num-
ber of the SHs, and use it for K -nearest classification of normal and
autistic brains. Initial experiments suggest that our shape index is a
promising supplement to the current autism diagnostic techniques.

Index Terms— Autism, shape analysis, brain cortex segmenta-
tion, spherical harmonics.

1. INTRODUCTION

Autistic Spectrum Disorder(ASD) or autism, is a complex neuro-
logical disability that is characterized by qualitative abnormalities in
behavior and higher cognitive functions. It typically appears during
the first three years of life and severely impacts the development of
social interaction and communication skills [1]. In 2009 about 0.9%
of American children fell into the autistic spectrum [2]. Both chil-
dren and adults with classic autism encounter difficulties in social
interaction, communication, and the use of language, and have lim-
ited imagination resulting in restricted, repetitive, and stereotypical
behavioral and activity patterns [3].

Conventional autism diagnostics rely on recording patient reac-
tions to varied stimuli through periodic screening interviews. Early
observations by parents can greatly reduce the false positive rate and
circumvent unnecessary referrals [4]. However, the diagnosis is sub-
ject to human observational and perceptional errors because autism
has many forms and personality traits that may be difficult to de-
tect. A more objective computer aided diagnosis (CAD) is a prime
necessity in this field.

Recent advances in neuro-imaging suggest new non-invasive
ways to automate autism detection by revealing differences between
quantitative characteristics of normal and autistic brains. Almost 60
years ago, an increased head size was the first observed characteris-
tic in children with autism [5]. Subsequent (including postmortem)
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studies have revealed an enlarged head circumference in autistic
patients (i.e., macrocephaly defined as the circumference above the
97th percentile, or two standard deviations above the mean [6]), as
well as an increase in brain size, volume, and weight. Courchesne et
al. [7] showed that children with autism have an ordinary brain size
at birth, but between the ages of two and four experience accelerated
brain growth, resulting in an increased brain volume relative to a
normal brain. By adolescence and adulthood, the differences in the
mean brain size between the two groups diminish largely due to the
increased relative growth in the control group [6].

In addition to the enlarged brain size, alterations of different
brain structures have been found in autistic individuals when com-
pared to normal ones. For example, MRI studies have shown ab-
normalities in the corpus callosum (CC) of autistic brains. Vidal et
al. [8] localized the autism-related thinning of the CC by relating the
CC thickness to the distance between uniformly spaced points on the
CC surface and the CC medial line (i.e., the average curve between
the superior and inferior CC boundaries). El-Baz et al. [9] reported
significant differences in all anatomical divisions, i.e. splenjum, ros-
trum, genu and body of autistic CCs by applying a 3D shape analysis
of the corpus callosum surface. Another autistic brain abnormality
is cortical grey matter enlargement, particularly in the frontal and
temporal lobes [10]. Additionally, MRI studies have shown an in-
creased volume in cerebellar white matter (CWM) in young children
with autism relative to controls and an abnormal CWM anatomy in
autistic brains [6, 7].

Instead of examining the volumetric changes in individual brain
structures, our recent diagnosis system [11] quantified differences
between the shape of CWM gyrifications for autistic and normal sub-
jects by analyzing 3D MRI brain images and classifies the subjects
based on the thickness of CWM gyrification. This paper attempts to
analyze and quantify differences between the whole 3D brain cor-
tex shapes for autism and normal subjects in order to discriminate
between them more accurately.

2. 3D SHAPE ANALYSIS FRAMEWORK

The proposed analysis begins with brain cortex segmentation from
3D MR images, through the use of a deformable 3D boundary that
is controlled by two probabilistic visual appearance models (the
learned prior and the estimated current appearance one). Then a 3D
mesh model of the cortex surface is mapped to a unit sphere, and
approximated using a linear combination of spherical harmonics
(SHs). The number of SHs yields a desired approximation accuracy
that can be used as a new shape index describing the complexity of
the brain shape. Then a K-nearest classifier separates the autistic
and normal subjects by their shape indexes.
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2.1. Brain cortex segmentation

The accurate cortex segmentation from 3D T2-MR images is a chal-
lenging problem, because there are no clear differences between in-
tensities in the cortex and surrounding organs. To overcome this
problem, we use a conventional 3D parametric deformable bound-
ary [12] but control its evolution with two probabilistic visual ap-
pearance models, namely, a learned cortex appearance prior and a
current appearance model of the image to be segmented. The prior
is a 3D Markov-Gibbs random field (MGRF) model of the cortex
intensities with translation- and rotation-invariant pairwise voxel in-
teraction, being learned analytically from training data in accord
with [13]. The current appearance is modeled by a mixed marginal
distribution of the voxel intensities in both the brain cortex and sur-
rounding tissues. To extract the voxel-wise model of the current cor-
tex appearance, the mixture is precisely approximated with a linear
combination of discrete Gaussians (LCDG) [14, 15] and automati-
cally separated into the cortex and background LCDG models. Fig. 1
demonstrates the results of our cortex segmentation. The Gibbs en-
ergies for each of the brain cortex voxel are higher than for any other
brain tissues, making the proposed approach very accurate (our seg-
mentation error with respect to the radiologist’s ”ground truth” is
about 2.3%). For more details about the segmentation model and for
a comparison with other approaches see [16].
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Fig. 1. 3D brain cortex segmentation projected onto 2D axial (A),
coronal (C), and saggital (S) planes for visualization: 2D slices of
the original T2-MRI images (a), pixel-wise Gibbs energies (b), our
segmentation (c), and the radiologist’s segmentation (d).

2.2. Spherical harmonics (SHs) shape analysis

Spectral SH analysis [17] considers 3D surface data as a linear com-
bination of specific basis functions. In our case, the surface of the
segmented brain cortex is approximated first by a triangulated 3D
mesh (see Fig. 2) built with an algorithm by Fang and Boas [18].
Secondly, the brain cortex surface for each subject is mapped for the
SH decomposition to the unit sphere. We propose a novel mapping
approach, called “Attraction-Repulsion” that calls for all the mesh
nodes to meet two conditions: (i) the unit distance of each node from
the brain cortex center as shown in Fig. 3. , and (ii) an equal distance
of each node from all of its nearest neighbors as shown in Fig. 4.
To detail our Attraction-Repulsion Algorithm (see its summary
in Algorithm 1), let 7 denote the iteration index, I be the total num-
ber of the mesh nodes (in all the experiments below I = 48962
nodes), and P, ; be the Cartesian coordinates of the surface node
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Fig. 2. Generating a 3D mesh for the brain cortex surface from a
stack of successive segmented 2D T2-MR slices.
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Fig. 3. 3D illustration of the unit distance from all surface nodes to
the center of the brain cortex.
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Fig. 4. 2D illustration of the neighbors rearrangement: initial (a) vs.
final equidistant locations (b) in all the directions.

4 at iteration 7; ¢ = 1,...,I. Let J be the number of the neigh-
bors for a mesh node (see e.g., Fig. 4) and d.;; denote the Eu-
clidean distance between the surface nodes ¢ and j at iteration 7
(as shown in Fig. 4(b)), where ¢ = 1,...,Tand j = 1,...,J. Let
A;ji = P j — P, ; denote the displacement between the nodes
j and s at iteration 7. Let Ca,1, Ca,2, Cr be the attraction and re-
pulsion constants, respectively, that control the displacement of each
surface node.
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Fig. 5. Brain cortex mesh (a), its smoothed version (b), and the
Attraction-Repulsion mapping to the unit sphere (c).

The starting attraction step of the proposed mapping tends to
center each node P;; ¢ = 1,..., I, with respect to its neighbors by
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Algorithm 1: Attraction-Repulsion Algorithm

Initialization
o Construct the 3D brain cortex mesh (Fig. 5,a).
e Smooth it by the Laplacian filtering (Fig. 5)b).
o Initialize the mapping of the smoothed mesh to the
unit sphere.
Repeat
e Fori=1—1
- Attraction:
* Select a node to process.
% Update the node using Eq. (1)
- Repulsion:
* Update the node using Eq. (2).
e End (all nodes in the mesh are shifted and back-
projected onto the unit sphere).

While changes in the node positions occur (Fig. 5.c).

adjusting iteratively its location:

J

P.,=P.;+Ca, Z Ar,jidz,ji + C’A,zﬂ (1)
i drji

J=lij#i

where the factor Ca 2 keeps the tightly packed nodes from collision

and also pushes the adjusted nodes away from their neighbors if a

certain neighbor is much closer than the others.

The subsequent repulsion step inflates the whole mesh by push-
ing all the nodes outwards to become evenly spaced after their final
back-projection onto the unit sphere along the rays from the cen-
ter of the sphere. To ensure the nodes that have not been shifted
will not collide with the altered node, the location of each node P;;

i=1,...,1,is updated before the back-projection as follows:
. Cr s~ [ Arji
T+ =Pri+ oI A ]|2 @
J=liji I

where a repulsion constant Cr controls the displacement of each
surface node and establishes a balance between the processing time
and accuracy (e.g., a smaller Cr values guarantees that the node
faces will not become crossed during the iterations at the expense
of the increased processing time). All the experiments below are
obtained with 0.3 < Cr < 0.7.

The original brain cortex, mapped to the unit sphere with the
proposed Attraction-Repulsion algorithm, is approximated by a lin-
ear combination of SHs, the lower-order harmonics being sufficient
to represent more generic information, while the finer details re-
quiring the higher-order ones. The SHs are generated by solving
an isotropic heat equation for the cortex surface on the unit sphere.
Let S : M — U denote the mapping of a cortical mesh M to
the unit sphere U. Each node P = (z,y,2) € M mapped to the
spherical position u = S(P) is represented by the spherical coor-
dinates u = (sin 0 cos ¢, sin @ sin ¢, cos §) where § € [0, 7] and
¢ € [0, 2m) are the polar and azimuth angles, respectively. The SH
Y. of degree a and order g is defined as [19]:

eGP cosOsin(|Ble) -a<pB< -1
Yop = C—;—ZEGL?l cos 6 B=0 (3
capG?! cos 6 cos(|8]p) 1<B8<a

1
where cop = (% %Z—;f%%) * and G i the associated Legen-

dre polynomial of degree a and order (3. For the fixed a, the polyno-
mials G2 are orthogonal over the range [-1,1]. As shown in [19],
the Legendre polynomials are effective in calculating SHs, and this
is the main motivation behind their use in this work.

Finally, the brain cortex is reconstructed from the SHs of Eq. (3).
In the case of the SHs expansion, the standard least-square fitting
does not model accurately the 3D shape of the brain cortex and can
miss some of the shape details that discriminate between the autistic
and normal brains. To circumvent this problem, we used the iterative
residual fitting by Shen et al. [20] that accurately approximates 3D
gyrifications of an autistic and normal brain cortex. As demonstrated
in Fig. 6, the model accuracy does not significantly change for the
control subject from the 25 to 60 SHs, while it continues to increase
for the autistic subject.

2.3. Quantitative brain cortex shape analysis

Our main hypothesis is that the brain cortex gyral frequency for
autistic subjects is greater than for control ones as in Fig. 6, so that
more SHs have to be used for an accurate approximation of the brain
cortex gyrifications. Therefore, the number of the SHs, after which
there is no significant changes in the approximations, can be used
as a new shape index quantifying the cortex complexity of both the
autistic and normal brains. Due to the unit sphere mapping, the orig-
inal brain cortex mesh for each subject is inherently aligned with the
mesh for the approximate shape, and the sum of the Euclidean dis-
tances between the corresponding nodes gives the total error between
both the mesh models. As shown in Fig. 7, the total error curves for
the increasing number /C of the SHs can be used as a discriminatory
feature to differentiate between the subjects.
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Fig. 7. Estimation of the shape index from the total cortex approxi-
mation error for autistic and normal subjects.

3. EXPERIMENTAL RESULTS AND CONCLUSIONS

The proposed approach has been tested on in-vivo data that has been
collected from 45 subjects (15 autistic subjects of age 22.1 £ 9.7
years and 30 control subjects of age 20.7 £ 8.5 years). The subjects
were scanned using a 1.5 Tesla GE MRI system with voxel reso-
lution of 0.9375 x 0.9375 x 1.5 mm® using a T2 weighted imag-
ing sequence protocol. The “ground truth” diagnosis to evaluate the
classification accuracy for each patient was given by five medical
experts.
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Fig. 6. Approximation of the 3D brain cortex shape for autistic (A) and normal subjects (C).

The training subset for classification (10 persons in Fig. 7) was
arbitrarily selected among all the 45 subjects. The classification ac-
curacy of the k-nearest classifier for both the training and test sub-
jects was evaluated using the x>-test at the 95% confidence level:
this correctly classified 14 out of 15 autistic subjects (93.3% accu-
racy), and 30 out of 30 control subjects (100% accuracy). The ac-
curacy of the traditional volumetric approach is 8 out of 15 autistic
subjects (53.3%), and 19 out of 30 control subjects (63.3%) at the
95% confidence level. These results highlight the advantage of the
proposed diagnostic tool.

In total, these preliminary results show that the 3D brain cor-
tex shape analysis is able to accurately discriminate between autistic
and normal subjects. Our proposal substantially differs from known
diagnostic techniques that exploit only volumetric descriptions of
different brain structures and thus are in principle more sensitive to
the selection of ages and segmentation errors [6]. In contrast, we
derive the efficient quantitative classification feature from the whole
3D cortex shape. Our experiments demonstrate that the proposed
general geometric feature of cortex gyrifications has statistically sig-
nificant differences for the 45 normal and autistic subjects under con-
sideration. In the future, we will investigate different brain structures
in order to quantitatively characterize their temporal development
and changes in an autistic brain. To validate and possibly modify the
proposed approach, we will test it on larger data sets with a known
ground truth (i.e., the doctors’ diagnosis).
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